You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

825 lines
26 KiB

/*
The MIT License (MIT)
Copyright (c) 2021 José Antonio Fernández Fernández
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
#pragma once
#include <iostream>
#include <vector>
#include <array>
#include <algorithm>
#include <unordered_map>
namespace tmd
{
/* ========================================== DECLARATIONS ========================================== */
// Small vector 3D class class
template<typename FLOAT>
class Vec3r
{
public:
std::array<FLOAT, 3> v;
Vec3r() {};
template<typename FLOAT_I>
Vec3r(const FLOAT_I& x, const FLOAT_I& y, const FLOAT_I& z) { v[0] = static_cast<FLOAT>(x); v[1] = static_cast<FLOAT>(y); v[2] = static_cast<FLOAT>(z); }
template<typename SIZE_T>
const FLOAT& operator[](const SIZE_T& i) const { return v[i]; }
template<typename SIZE_T>
FLOAT& operator[](const SIZE_T& i) { return v[i]; }
FLOAT dot(const Vec3r &u) const { return v[0]*u[0] + v[1]*u[1] + v[2]*u[2]; }
Vec3r<FLOAT> cross(const Vec3r &u) const { return Vec3r(v[1]*u[2] - v[2]*u[1], -v[0]*u[2] + v[2]*u[0], v[0]*u[1] - v[1]*u[0]); }
Vec3r<FLOAT> operator+(const Vec3r &u) const { return Vec3r(v[0]+u[0], v[1]+u[1], v[2]+u[2]); }
Vec3r<FLOAT> operator-(const Vec3r &u) const { return Vec3r(v[0]-u[0], v[1]-u[1], v[2]-u[2]); }
void operator+=(const Vec3r& u) { v[0] += u[0]; v[1] += u[1]; v[2] += u[2]; }
template<typename FLOAT_I>
Vec3r<FLOAT> operator*(const FLOAT_I &a) const { return Vec3r(static_cast<FLOAT>(a)*v[0], static_cast<FLOAT>(a)*v[1], static_cast<FLOAT>(a)*v[2]); }
template<typename FLOAT_I>
Vec3r<FLOAT> operator/(const FLOAT_I &a) const { return Vec3r(v[0]/static_cast<FLOAT>(a), v[1]/static_cast<FLOAT>(a), v[2]/static_cast<FLOAT>(a)); }
template<typename FLOAT_I>
void operator/=(const FLOAT_I& a) { v[0] /= static_cast<FLOAT>(a); v[1] /= static_cast<FLOAT>(a); v[2] /= static_cast<FLOAT>(a); }
FLOAT squaredNorm() const { return this->dot(*this); }
FLOAT norm() const { return std::sqrt(this->squaredNorm()); }
Vec3r<FLOAT> normalized() const { return (*this) / this->norm(); }
void normalize() { const FLOAT norm = this->norm(); v[0] /= norm; v[1] /= norm; v[2] /= norm; }
};
template<typename FLOAT, typename FLOAT_I>
static inline Vec3r<FLOAT> operator*(const FLOAT_I& a, const Vec3r<FLOAT>& v) { return Vec3r<FLOAT>(static_cast<FLOAT>(a) * v[0], static_cast<FLOAT>(a) * v[1], static_cast<FLOAT>(a) * v[2]); }
using Vec3d = Vec3r<double>;
// -----------------------------------
// Point-Triangle distance declarations
enum class NearestEntity { V0, V1, V2, E01, E12, E02, F };
static double point_triangle_sq_unsigned(NearestEntity& nearest_entity, Vec3d& nearest_point, const Vec3d& point, const Vec3d& v0, const Vec3d& v1, const Vec3d& v2);
// -----------------------------------
// Struct that contains the result of a distance query
struct Result
{
double distance = std::numeric_limits<double>::max();
Vec3d nearest_point;
tmd::NearestEntity nearest_entity;
int triangle_id = -1;
};
// -----------------------------------
/**
* A class to compute signed and unsigned distances to a connected
* and watertight triangle mesh.
*/
class TriangleMeshDistance
{
private:
/* Private declarations */
struct BoundingSphere
{
Vec3d center;
double radius;
};
struct Node
{
BoundingSphere bv_left;
BoundingSphere bv_right;
int left = -1; // If left == -1, right is the triangle_id
int right = -1;
};
struct Triangle
{
std::array<Vec3d, 3> vertices;
int id = -1;
};
/* Private fields */
std::vector<Vec3d> vertices;
std::vector<std::array<int, 3>> triangles;
std::vector<Node> nodes;
std::vector<Vec3d> pseudonormals_triangles;
std::vector<std::array<Vec3d, 3>> pseudonormals_edges;
std::vector<Vec3d> pseudonormals_vertices;
BoundingSphere root_bv;
bool is_constructed = false;
/* Private methods */
void _construct();
void _build_tree(const int node_id, BoundingSphere& bounding_sphere, std::vector<Triangle> &triangles, const int begin, const int end);
void _query(Result &result, const Node &node, const Vec3d& point) const;
public:
/* Public methods */
TriangleMeshDistance() = default;
/**
* @brief Constructs a new TriangleMeshDistance object.
*
* @param vertices Pointer to the vertices coordinates array in xyzxyz... layout.
* @param n_vertices Number of vertices.
* @param triangles Pointer to the conectivity array in ijkijk... layout.
* @param n_triangles Number of triangles.
*/
template<typename FLOAT, typename INT, typename SIZE_T>
TriangleMeshDistance(const FLOAT* vertices, const SIZE_T n_vertices, const INT* triangles, const SIZE_T n_triangles);
/**
* @brief Constructs a new TriangleMeshDistance object.
*
* @param vertices Vertices of the triangle mesh. Y coordinate of the 3rd vertex should be access by `vertices[2][1]`.
* @param triangles Triangles of the triangle mesh. Index of the 2nd vertex of the 3rd triangle should be access by `triangles[2][1]`.
*/
template<typename IndexableVector3double, typename IndexableVector3int>
TriangleMeshDistance(const std::vector<IndexableVector3double>& vertices, const std::vector<IndexableVector3int>& triangles);
/**
* @brief Initializes an existing TriangleMeshDistance object (including empty ones).
*
* @param vertices Pointer to the vertices coordinates array in xyzxyz... layout.
* @param n_vertices Number of vertices.
* @param triangles Pointer to the conectivity array in ijkijk... layout.
* @param n_triangles Number of triangles.
*/
template<typename FLOAT, typename INT, typename SIZE_T>
void construct(const FLOAT* vertices, const SIZE_T n_vertices, const INT* triangles, const SIZE_T n_triangles);
/**
* @brief Initializes an existing TriangleMeshDistance object (including empty ones).
*
* @param vertices Vertices of the triangle mesh. Y coordinate of the 3rd vertex should be access by `vertices[2][1]`.
* @param triangles Triangles of the triangle mesh. Index of the 2nd vertex of the 3rd triangle should be access by `triangles[2][1]`.
*/
template<typename IndexableVector3double, typename IndexableVector3int>
void construct(const std::vector<IndexableVector3double>& vertices, const std::vector<IndexableVector3int>& triangles);
/**
* @brief Computes the unsigned distance from a point to the triangle mesh. Thread safe.
*
* @param point to query from. Typed to `Vec3d` but can be passed as `{x, y, z}`.
*
* @return Result containing distance, nearest point on the mesh, nearest entity and the nearest triangle index.
*/
template<typename IndexableVector3double>
Result unsigned_distance(const IndexableVector3double& point) const;
Result unsigned_distance(const std::array<double, 3>& point) const;
/**
* @brief Computes the unsigned distance from a point to the triangle mesh. Thread safe.
*
* @param point to query from. Typed to `Vec3d` but can be passed as `{x, y, z}`.
*
* @return Result containing distance, nearest point on the mesh, nearest entity and the nearest triangle index.
*/
template<typename IndexableVector3double>
Result signed_distance(const IndexableVector3double& point) const;
Result signed_distance(const std::array<double, 3>& point) const;
template<typename IndexableVector3double>
Result signed_sharp_distance(const IndexableVector3double& point) const;
Result signed_sharp_distance(const std::array<double, 3>& point) const;
};
}
/* ========================================== DEFINITIONS ========================================== */
template<typename FLOAT, typename INT, typename SIZE_T>
inline tmd::TriangleMeshDistance::TriangleMeshDistance(const FLOAT* vertices, const SIZE_T n_vertices, const INT* triangles, const SIZE_T n_triangles)
{
this->construct(vertices, n_vertices, triangles, n_triangles);
}
template<typename IndexableVector3double, typename IndexableVector3int>
inline tmd::TriangleMeshDistance::TriangleMeshDistance(const std::vector<IndexableVector3double>& vertices, const std::vector<IndexableVector3int>& triangles)
{
this->construct(vertices, triangles);
}
template<typename FLOAT, typename INT, typename SIZE_T>
inline void tmd::TriangleMeshDistance::construct(const FLOAT* vertices, const SIZE_T n_vertices, const INT* triangles, const SIZE_T n_triangles)
{
this->vertices.resize((size_t)n_vertices);
for (size_t i = 0; i < (size_t)n_vertices; i++) {
this->vertices[i][0] = (double)vertices[3*i + 0];
this->vertices[i][1] = (double)vertices[3*i + 1];
this->vertices[i][2] = (double)vertices[3*i + 2];
}
this->triangles.resize((size_t)n_triangles);
for (size_t i = 0; i < (size_t)n_triangles; i++) {
this->triangles[i][0] = (int)triangles[3*i + 0];
this->triangles[i][1] = (int)triangles[3*i + 1];
this->triangles[i][2] = (int)triangles[3*i + 2];
}
this->_construct();
}
template<typename IndexableVector3double, typename IndexableVector3int>
inline void tmd::TriangleMeshDistance::construct(const std::vector<IndexableVector3double>& vertices, const std::vector<IndexableVector3int>& triangles)
{
this->vertices.resize(vertices.size());
for (size_t i = 0; i < vertices.size(); i++) {
this->vertices[i][0] = (double)vertices[i][0];
this->vertices[i][1] = (double)vertices[i][1];
this->vertices[i][2] = (double)vertices[i][2];
}
this->triangles.resize(triangles.size());
for (size_t i = 0; i < triangles.size(); i++) {
this->triangles[i][0] = (int)triangles[i][0];
this->triangles[i][1] = (int)triangles[i][1];
this->triangles[i][2] = (int)triangles[i][2];
}
this->_construct();
}
inline tmd::Result tmd::TriangleMeshDistance::signed_distance(const std::array<double, 3>& point) const
{
const Vec3d p(point[0], point[1], point[2]);
Result result = this->unsigned_distance(p);
const std::array<int, 3>& triangle = this->triangles[result.triangle_id];
Vec3d pseudonormal;
switch (result.nearest_entity)
{
case tmd::NearestEntity::V0:
pseudonormal = this->pseudonormals_vertices[triangle[0]];
break;
case tmd::NearestEntity::V1:
pseudonormal = this->pseudonormals_vertices[triangle[1]];
break;
case tmd::NearestEntity::V2:
pseudonormal = this->pseudonormals_vertices[triangle[2]];
break;
case tmd::NearestEntity::E01:
pseudonormal = this->pseudonormals_edges[result.triangle_id][0];
break;
case tmd::NearestEntity::E12:
pseudonormal = this->pseudonormals_edges[result.triangle_id][1];
break;
case tmd::NearestEntity::E02:
pseudonormal = this->pseudonormals_edges[result.triangle_id][2];
break;
case tmd::NearestEntity::F:
pseudonormal = this->pseudonormals_triangles[result.triangle_id];
break;
default:
break;
}
const Vec3d u = p - result.nearest_point;
result.distance *= (u.dot(pseudonormal) >= 0.0) ? 1.0 : -1.0;
return result;
}
template<typename IndexableVector3double>
inline tmd::Result tmd::TriangleMeshDistance::signed_distance(const IndexableVector3double& point) const
{
return this->signed_distance({ static_cast<double>(point[0]), static_cast<double>(point[1]), static_cast<double>(point[2]) });
}
inline tmd::Result tmd::TriangleMeshDistance::signed_sharp_distance(const std::array<double, 3>& point) const
{
const Vec3d p(point[0], point[1], point[2]);
Result result = this->unsigned_distance(p);
const std::array<int, 3>& triangle = this->triangles[result.triangle_id];
const Vec3d u = p - result.nearest_point;
auto dis = u.dot(this->pseudonormals_triangles[result.triangle_id]);
result.distance = dis;
return result;
}
template<typename IndexableVector3double>
inline tmd::Result tmd::TriangleMeshDistance::signed_sharp_distance(const IndexableVector3double& point) const
{
return this->signed_sharp_distance({ static_cast<double>(point[0]), static_cast<double>(point[1]), static_cast<double>(point[2]) });
}
inline tmd::Result tmd::TriangleMeshDistance::unsigned_distance(const std::array<double, 3>& point) const
{
if (!this->is_constructed) {
std::cout << "DistanceTriangleMesh error: not constructed." << std::endl;
exit(-1);
}
const Vec3d p(point[0], point[1], point[2]);
Result result;
result.distance = std::numeric_limits<double>::max();
this->_query(result, this->nodes[0], p);
return result;
}
template<typename IndexableVector3double>
inline tmd::Result tmd::TriangleMeshDistance::unsigned_distance(const IndexableVector3double& point) const
{
return this->unsigned_distance({static_cast<double>(point[0]), static_cast<double>(point[1]), static_cast<double>(point[2])});
}
inline void tmd::TriangleMeshDistance::_construct()
{
if (this->triangles.size() == 0) {
std::cout << "DistanceTriangleMesh error: Empty triangle list." << std::endl;
exit(-1);
}
// Build the tree containing the triangles
std::vector<Triangle> triangles;
triangles.resize(this->triangles.size());
for (int i = 0; i < (int)this->triangles.size(); i++) {
triangles[i].id = i;
const std::array<int, 3>& triangle = this->triangles[i];
triangles[i].vertices[0] = this->vertices[triangle[0]];
triangles[i].vertices[1] = this->vertices[triangle[1]];
triangles[i].vertices[2] = this->vertices[triangle[2]];
}
this->nodes.push_back(Node());
this->_build_tree(0, this->root_bv, triangles, 0, (int)triangles.size());
// Compute pseudonormals
//// Edge data structure
std::unordered_map<uint64_t, Vec3d> edge_normals;
std::unordered_map<uint64_t, int> edges_count;
const uint64_t n_vertices = (uint64_t)this->vertices.size();
auto add_edge_normal = [&](const int i, const int j, const Vec3d& triangle_normal)
{
const uint64_t key = std::min(i, j) * n_vertices + std::max(i, j);
if (edge_normals.find(key) == edge_normals.end()) {
edge_normals[key] = triangle_normal;
edges_count[key] = 1;
}
else {
edge_normals[key] += triangle_normal;
edges_count[key] += 1;
}
};
auto get_edge_normal = [&](const int i, const int j)
{
const uint64_t key = std::min(i, j) * n_vertices + std::max(i, j);
return edge_normals.find(key)->second;
};
//// Compute
this->pseudonormals_triangles.resize(this->triangles.size());
this->pseudonormals_edges.resize(this->triangles.size());
this->pseudonormals_vertices.resize(this->vertices.size(), { 0, 0, 0 });
for (int i = 0; i < (int)this->triangles.size(); i++) {
// Triangle
const std::array<int, 3>& triangle = this->triangles[i];
const Vec3d& a = this->vertices[triangle[0]];
const Vec3d& b = this->vertices[triangle[1]];
const Vec3d& c = this->vertices[triangle[2]];
const Vec3d triangle_normal = (b - a).cross(c - a).normalized();
this->pseudonormals_triangles[i] = triangle_normal;
// Vertex
const double alpha_0 = std::acos((b - a).normalized().dot((c - a).normalized()));
const double alpha_1 = std::acos((a - b).normalized().dot((c - b).normalized()));
const double alpha_2 = std::acos((b - c).normalized().dot((a - c).normalized()));
this->pseudonormals_vertices[triangle[0]] += alpha_0 * triangle_normal;
this->pseudonormals_vertices[triangle[1]] += alpha_1 * triangle_normal;
this->pseudonormals_vertices[triangle[2]] += alpha_2 * triangle_normal;
// Edge
add_edge_normal(triangle[0], triangle[1], triangle_normal);
add_edge_normal(triangle[1], triangle[2], triangle_normal);
add_edge_normal(triangle[0], triangle[2], triangle_normal);
}
for (Vec3d& n : this->pseudonormals_vertices) {
n.normalize();
}
for (int tri_i = 0; tri_i < (int)this->triangles.size(); tri_i++) {
const std::array<int, 3>& triangle = this->triangles[tri_i];
this->pseudonormals_edges[tri_i][0] = get_edge_normal(triangle[0], triangle[1]).normalized();
this->pseudonormals_edges[tri_i][1] = get_edge_normal(triangle[1], triangle[2]).normalized();
this->pseudonormals_edges[tri_i][2] = get_edge_normal(triangle[0], triangle[2]).normalized();
}
// Check that the mesh is watertight: All edges appear exactly once.
bool single_edge_found = false;
bool triple_edge_found = false;
for (const auto edge_count : edges_count) {
if (edge_count.second == 1) {
single_edge_found = true;
}
else if (edge_count.second > 2) {
triple_edge_found = true;
}
}
if (single_edge_found) {
std::cout << "DistanceTriangleMesh warning: mesh is not watertight. At least one edge found belonging to just one triangle." << std::endl;
}
if (triple_edge_found) {
std::cout << "DistanceTriangleMesh warning: mesh is not watertight. At least one edge found belonging to more than two triangle." << std::endl;
}
this->is_constructed = true;
}
inline void tmd::TriangleMeshDistance::_build_tree(const int node_id, BoundingSphere& bounding_sphere, std::vector<Triangle>& triangles, const int begin, const int end)
{
const int n_triangles = end - begin;
if (n_triangles == 0) {
std::cout << "DistanceTriangleMesh::_construct error: Empty leave." << std::endl;
exit(-1);
}
else if (n_triangles == 1) {
// Build node leaf
this->nodes[node_id].left = -1;
this->nodes[node_id].right = triangles[begin].id;
//// Bounding sphere
const Triangle& tri = triangles[begin];
const Vec3d center = (tri.vertices[0] + tri.vertices[1] + tri.vertices[2]) / 3.0;
const double radius = std::max(std::max((tri.vertices[0] - center).norm(), (tri.vertices[1] - center).norm()), (tri.vertices[2] - center).norm());
bounding_sphere.center = center;
bounding_sphere.radius = radius;
}
else {
// Compute AxisAligned Bounding Box center and largest dimension of all current triangles
Vec3d top = { std::numeric_limits<double>::lowest(), std::numeric_limits<double>::lowest(), std::numeric_limits<double>::lowest() };
Vec3d bottom = { std::numeric_limits<double>::max(), std::numeric_limits<double>::max(), std::numeric_limits<double>::max() };
Vec3d center = {0, 0, 0};
for (int tri_i = begin; tri_i < end; tri_i++) {
for (int vertex_i = 0; vertex_i < 3; vertex_i++) {
const Vec3d& p = triangles[tri_i].vertices[vertex_i];
center += p;
for (int coord_i = 0; coord_i < 3; coord_i++) {
top[coord_i] = std::max(top[coord_i], p[coord_i]);
bottom[coord_i] = std::min(bottom[coord_i], p[coord_i]);
}
}
}
center /= 3*n_triangles;
const Vec3d diagonal = top - bottom;
const int split_dim = (int)(std::max_element(&diagonal[0], &diagonal[0] + 3) - &diagonal[0]);
// Set node bounding sphere
double radius_sq = 0.0;
for (int tri_i = begin; tri_i < end; tri_i++) {
for (int i = 0; i < 3; i++) {
radius_sq = std::max(radius_sq, (center - triangles[tri_i].vertices[i]).squaredNorm());
}
}
bounding_sphere.center = center;
bounding_sphere.radius = std::sqrt(radius_sq);
// Sort the triangles according to their center along the split dimension
std::sort(triangles.begin() + begin, triangles.begin() + end,
[split_dim](const Triangle& a, const Triangle& b)
{
return a.vertices[0][split_dim] < b.vertices[0][split_dim];
}
);
// Children
const int mid = (int)(0.5 * (begin + end));
this->nodes[node_id].left = (int)this->nodes.size();
this->nodes.push_back(Node());
this->_build_tree(this->nodes[node_id].left, this->nodes[node_id].bv_left, triangles, begin, mid);
this->nodes[node_id].right = (int)this->nodes.size();
this->nodes.push_back(Node());
this->_build_tree(this->nodes[node_id].right, this->nodes[node_id].bv_right, triangles, mid, end);
}
}
inline void tmd::TriangleMeshDistance::_query(Result& result, const Node& node, const Vec3d& point) const
{
// End of recursion
if (node.left == -1) {
const int triangle_id = node.right;
const std::array<int, 3>& triangle = this->triangles[node.right]; // If left == -1, right is the triangle_id
const Vec3d& v0 = this->vertices[triangle[0]];
const Vec3d& v1 = this->vertices[triangle[1]];
const Vec3d& v2 = this->vertices[triangle[2]];
Vec3d nearest_point;
tmd::NearestEntity nearest_entity;
const double distance_sq = tmd::point_triangle_sq_unsigned(nearest_entity, nearest_point, point, v0, v1, v2);
if (distance_sq < result.distance * result.distance) {
result.nearest_point = nearest_point;
result.nearest_entity = nearest_entity;
result.distance = std::sqrt(distance_sq);
result.triangle_id = triangle_id;
}
}
// Recursion
else {
// Find which child bounding volume is closer
const double d_left = (point - node.bv_left.center).norm() - node.bv_left.radius;
const double d_right = (point - node.bv_right.center).norm() - node.bv_right.radius;
if (d_left < d_right) {
// Overlap test
if (d_left < result.distance) {
this->_query(result, this->nodes[node.left], point);
}
if (d_right < result.distance) {
this->_query(result, this->nodes[node.right], point);
}
}
else {
if (d_right < result.distance) {
this->_query(result, this->nodes[node.right], point);
}
if (d_left < result.distance) {
this->_query(result, this->nodes[node.left], point);
}
}
}
}
static double tmd::point_triangle_sq_unsigned(NearestEntity& nearest_entity, Vec3d& nearest_point, const Vec3d& point, const Vec3d& v0, const Vec3d& v1, const Vec3d& v2)
{
Vec3d diff = v0 - point;
Vec3d edge0 = v1 - v0;
Vec3d edge1 = v2 - v0;
double a00 = edge0.dot(edge0);
double a01 = edge0.dot(edge1);
double a11 = edge1.dot(edge1);
double b0 = diff.dot(edge0);
double b1 = diff.dot(edge1);
double c = diff.dot(diff);
double det = std::abs(a00 * a11 - a01 * a01);
double s = a01 * b1 - a11 * b0;
double t = a01 * b0 - a00 * b1;
double d2 = -1.0;
if (s + t <= det)
{
if (s < 0)
{
if (t < 0) // region 4
{
if (b0 < 0)
{
t = 0;
if (-b0 >= a00)
{
nearest_entity = NearestEntity::V1;
s = 1;
d2 = a00 + (2) * b0 + c;
}
else
{
nearest_entity = NearestEntity::E01;
s = -b0 / a00;
d2 = b0 * s + c;
}
}
else
{
s = 0;
if (b1 >= 0)
{
nearest_entity = NearestEntity::V0;
t = 0;
d2 = c;
}
else if (-b1 >= a11)
{
nearest_entity = NearestEntity::V2;
t = 1;
d2 = a11 + (2) * b1 + c;
}
else
{
nearest_entity = NearestEntity::E02;
t = -b1 / a11;
d2 = b1 * t + c;
}
}
}
else // region 3
{
s = 0;
if (b1 >= 0)
{
nearest_entity = NearestEntity::V0;
t = 0;
d2 = c;
}
else if (-b1 >= a11)
{
nearest_entity = NearestEntity::V2;
t = 1;
d2 = a11 + (2) * b1 + c;
}
else
{
nearest_entity = NearestEntity::E02;
t = -b1 / a11;
d2 = b1 * t + c;
}
}
}
else if (t < 0) // region 5
{
t = 0;
if (b0 >= 0)
{
nearest_entity = NearestEntity::V0;
s = 0;
d2 = c;
}
else if (-b0 >= a00)
{
nearest_entity = NearestEntity::V1;
s = 1;
d2 = a00 + (2) * b0 + c;
}
else
{
nearest_entity = NearestEntity::E01;
s = -b0 / a00;
d2 = b0 * s + c;
}
}
else // region 0
{
nearest_entity = NearestEntity::F;
// minimum at interior point
double invDet = (1) / det;
s *= invDet;
t *= invDet;
d2 = s * (a00 * s + a01 * t + (2) * b0) +
t * (a01 * s + a11 * t + (2) * b1) + c;
}
}
else
{
double tmp0, tmp1, numer, denom;
if (s < 0) // region 2
{
tmp0 = a01 + b0;
tmp1 = a11 + b1;
if (tmp1 > tmp0)
{
numer = tmp1 - tmp0;
denom = a00 - (2) * a01 + a11;
if (numer >= denom)
{
nearest_entity = NearestEntity::V1;
s = 1;
t = 0;
d2 = a00 + (2) * b0 + c;
}
else
{
nearest_entity = NearestEntity::E12;
s = numer / denom;
t = 1 - s;
d2 = s * (a00 * s + a01 * t + (2) * b0) +
t * (a01 * s + a11 * t + (2) * b1) + c;
}
}
else
{
s = 0;
if (tmp1 <= 0)
{
nearest_entity = NearestEntity::V2;
t = 1;
d2 = a11 + (2) * b1 + c;
}
else if (b1 >= 0)
{
nearest_entity = NearestEntity::V0;
t = 0;
d2 = c;
}
else
{
nearest_entity = NearestEntity::E02;
t = -b1 / a11;
d2 = b1 * t + c;
}
}
}
else if (t < 0) // region 6
{
tmp0 = a01 + b1;
tmp1 = a00 + b0;
if (tmp1 > tmp0)
{
numer = tmp1 - tmp0;
denom = a00 - (2) * a01 + a11;
if (numer >= denom)
{
nearest_entity = NearestEntity::V2;
t = 1;
s = 0;
d2 = a11 + (2) * b1 + c;
}
else
{
nearest_entity = NearestEntity::E12;
t = numer / denom;
s = 1 - t;
d2 = s * (a00 * s + a01 * t + (2) * b0) +
t * (a01 * s + a11 * t + (2) * b1) + c;
}
}
else
{
t = 0;
if (tmp1 <= 0)
{
nearest_entity = NearestEntity::V1;
s = 1;
d2 = a00 + (2) * b0 + c;
}
else if (b0 >= 0)
{
nearest_entity = NearestEntity::V0;
s = 0;
d2 = c;
}
else
{
nearest_entity = NearestEntity::E01;
s = -b0 / a00;
d2 = b0 * s + c;
}
}
}
else // region 1
{
numer = a11 + b1 - a01 - b0;
if (numer <= 0)
{
nearest_entity = NearestEntity::V2;
s = 0;
t = 1;
d2 = a11 + (2) * b1 + c;
}
else
{
denom = a00 - (2) * a01 + a11;
if (numer >= denom)
{
nearest_entity = NearestEntity::V1;
s = 1;
t = 0;
d2 = a00 + (2) * b0 + c;
}
else
{
nearest_entity = NearestEntity::E12;
s = numer / denom;
t = 1 - s;
d2 = s * (a00 * s + a01 * t + (2) * b0) +
t * (a01 * s + a11 * t + (2) * b1) + c;
}
}
}
}
// Account for numerical round-off error.
if (d2 < 0)
{
d2 = 0;
}
nearest_point = v0 + s * edge0 + t * edge1;
return d2;
}