282 lines
10 KiB

// David Eberly, Geometric Tools, Redmond WA 98052
// Copyright (c) 1998-2021
// Distributed under the Boost Software License, Version 1.0.
// https://www.boost.org/LICENSE_1_0.txt
// https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
// Version: 4.0.2019.08.13
#pragma once
#include <Mathematics/ParticleSystem.h>
namespace gte
{
template <int N, typename Real>
class MassSpringVolume : public ParticleSystem<N, Real>
{
public:
// Construction and destruction. This class represents an SxRxC array
// of masses lying on in a volume and connected by an array of
// springs. The masses are indexed by mass[s][r][c] for 0 <= s < S,
// 0 <= r < R and 0 <= c < C. The mass at interior position X[s][r][c]
// is connected by springs to the masses at positions X[s][r-1][c],
// X[s][r+1][c], X[s][r][c-1], X[s][r][c+1], X[s-1][r][c] and
// X[s+1][r][c]. Boundary masses have springs connecting them to the
// obvious neighbors ("face" mass has 5 neighbors, "edge" mass has 4
// neighbors, "corner" mass has 3 neighbors). The masses are arranged
// in lexicographical order: position[c+C*(r+R*s)] = X[s][r][c] for
// 0 <= s < S, 0 <= r < R, and 0 <= c < C. The other arrays are
// stored similarly.
virtual ~MassSpringVolume() = default;
MassSpringVolume(int numSlices, int numRows, int numCols, Real step)
:
ParticleSystem<N, Real>(numSlices* numRows* numCols, step),
mNumSlices(numSlices),
mNumRows(numRows),
mNumCols(numCols),
mConstantS(numSlices* numRows* numCols),
mLengthS(numSlices* numRows* numCols),
mConstantR(numSlices* numRows* numCols),
mLengthR(numSlices* numRows* numCols),
mConstantC(numSlices* numRows* numCols),
mLengthC(numSlices* numRows* numCols)
{
std::fill(mConstantS.begin(), mConstantS.end(), (Real)0);
std::fill(mLengthS.begin(), mLengthS.end(), (Real)0);
std::fill(mConstantR.begin(), mConstantR.end(), (Real)0);
std::fill(mLengthR.begin(), mLengthR.end(), (Real)0);
std::fill(mConstantC.begin(), mConstantC.end(), (Real)0);
std::fill(mLengthC.begin(), mLengthC.end(), (Real)0);
}
// Member access.
inline int GetNumSlices() const
{
return mNumSlices;
}
inline int GetNumRows() const
{
return mNumRows;
}
inline int GetNumCols() const
{
return mNumCols;
}
inline void SetMass(int s, int r, int c, Real mass)
{
ParticleSystem<N, Real>::SetMass(GetIndex(s, r, c), mass);
}
inline void SetPosition(int s, int r, int c, Vector<N, Real> const& position)
{
ParticleSystem<N, Real>::SetPosition(GetIndex(s, r, c), position);
}
inline void SetVelocity(int s, int r, int c, Vector<N, Real> const& velocity)
{
ParticleSystem<N, Real>::SetVelocity(GetIndex(s, r, c), velocity);
}
Real const& GetMass(int s, int r, int c) const
{
return ParticleSystem<N, Real>::GetMass(GetIndex(s, r, c));
}
inline Vector<N, Real> const& GetPosition(int s, int r, int c) const
{
return ParticleSystem<N, Real>::GetPosition(GetIndex(s, r, c));
}
inline Vector<N, Real> const& GetVelocity(int s, int r, int c) const
{
return ParticleSystem<N, Real>::GetVelocity(GetIndex(s, r, c));
}
// Each interior mass at (s,r,c) has 6 adjacent springs. Face masses
// have only 5 neighbors, edge masses have only 4 neighbors, and corner
// masses have only 3 neighbors. Each mass provides access to 3 adjacent
// springs at (s,r,c+1), (s,r+1,c), and (s+1,r,c). The face, edge, and
// corner masses provide access to only an appropriate subset of these.
// The caller is responsible for ensuring the validity of the (s,r,c)
// inputs.
// to (s+1,r,c)
inline void SetConstantS(int s, int r, int c, Real constant)
{
mConstantS[GetIndex(s, r, c)] = constant;
}
// to (s+1,r,c)
inline void SetLengthS(int s, int r, int c, Real length)
{
mLengthS[GetIndex(s, r, c)] = length;
}
// to (s,r+1,c)
inline void SetConstantR(int s, int r, int c, Real constant)
{
mConstantR[GetIndex(s, r, c)] = constant;
}
// to (s,r+1,c)
inline void SetLengthR(int s, int r, int c, Real length)
{
mLengthR[GetIndex(s, r, c)] = length;
}
// to (s,r,c+1)
inline void SetConstantC(int s, int r, int c, Real constant)
{
mConstantC[GetIndex(s, r, c)] = constant;
}
// spring to (s,r,c+1)
inline void SetLengthC(int s, int r, int c, Real length)
{
mLengthC[GetIndex(s, r, c)] = length;
}
inline Real const& GetConstantS(int s, int r, int c) const
{
return mConstantS[GetIndex(s, r, c)];
}
inline Real const& GetLengthS(int s, int r, int c) const
{
return mLengthS[GetIndex(s, r, c)];
}
inline Real const& GetConstantR(int s, int r, int c) const
{
return mConstantR[GetIndex(s, r, c)];
}
inline Real const& GetLengthR(int s, int r, int c) const
{
return mLengthR[GetIndex(s, r, c)];
}
inline Real const& GetConstantC(int s, int r, int c) const
{
return mConstantC[GetIndex(s, r, c)];
}
inline Real const& GetLengthC(int s, int r, int c) const
{
return mLengthC[GetIndex(s, r, c)];
}
// The default external force is zero. Derive a class from this one
// to provide nonzero external forces such as gravity, wind,
// friction and so on. This function is called by Acceleration(...)
// to compute the impulse F/m generated by the external force F.
virtual Vector<N, Real> ExternalAcceleration(int, Real,
std::vector<Vector<N, Real>> const&,
std::vector<Vector<N, Real>> const&)
{
return Vector<N, Real>::Zero();
}
protected:
// Callback for acceleration (ODE solver uses x" = F/m) applied to
// particle i. The positions and velocities are not necessarily
// mPosition and mVelocity, because the ODE solver evaluates the
// impulse function at intermediate positions.
virtual Vector<N, Real> Acceleration(int i, Real time,
std::vector<Vector<N, Real>> const& position,
std::vector<Vector<N, Real>> const& velocity)
{
// Compute spring forces on position X[i]. The positions are not
// necessarily mPosition, because the RK4 solver in ParticleSystem
// evaluates the acceleration function at intermediate positions.
// The face, edge, and corner points of the volume of masses must
// be handled separately, because each has fewer than eight
// springs attached to it.
Vector<N, Real> acceleration = ExternalAcceleration(i, time, position, velocity);
Vector<N, Real> diff, force;
Real ratio;
int s, r, c, prev, next;
GetCoordinates(i, s, r, c);
if (s > 0)
{
prev = i - mNumRows * mNumCols; // index to previous s-neighbor
diff = position[prev] - position[i];
ratio = GetLengthS(s - 1, r, c) / Length(diff);
force = GetConstantS(s - 1, r, c) * ((Real)1 - ratio) * diff;
acceleration += this->mInvMass[i] * force;
}
if (s < mNumSlices - 1)
{
next = i + mNumRows * mNumCols; // index to next s-neighbor
diff = position[next] - position[i];
ratio = GetLengthS(s, r, c) / Length(diff);
force = GetConstantS(s, r, c) * ((Real)1 - ratio) * diff;
acceleration += this->mInvMass[i] * force;
}
if (r > 0)
{
prev = i - mNumCols; // index to previous r-neighbor
diff = position[prev] - position[i];
ratio = GetLengthR(s, r - 1, c) / Length(diff);
force = GetConstantR(s, r - 1, c) * ((Real)1 - ratio) * diff;
acceleration += this->mInvMass[i] * force;
}
if (r < mNumRows - 1)
{
next = i + mNumCols; // index to next r-neighbor
diff = position[next] - position[i];
ratio = GetLengthR(s, r, c) / Length(diff);
force = GetConstantR(s, r, c) * ((Real)1 - ratio) * diff;
acceleration += this->mInvMass[i] * force;
}
if (c > 0)
{
prev = i - 1; // index to previous c-neighbor
diff = position[prev] - position[i];
ratio = GetLengthC(s, r, c - 1) / Length(diff);
force = GetConstantC(s, r, c - 1) * ((Real)1 - ratio) * diff;
acceleration += this->mInvMass[i] * force;
}
if (c < mNumCols - 1)
{
next = i + 1; // index to next c-neighbor
diff = position[next] - position[i];
ratio = GetLengthC(s, r, c) / Length(diff);
force = GetConstantC(s, r, c) * ((Real)1 - ratio) * diff;
acceleration += this->mInvMass[i] * force;
}
return acceleration;
}
inline int GetIndex(int s, int r, int c) const
{
return c + mNumCols * (r + mNumRows * s);
}
void GetCoordinates(int i, int& s, int& r, int& c) const
{
c = i % mNumCols;
i = (i - c) / mNumCols;
r = i % mNumRows;
s = i / mNumRows;
}
int mNumSlices, mNumRows, mNumCols;
std::vector<Real> mConstantS, mLengthS;
std::vector<Real> mConstantR, mLengthR;
std::vector<Real> mConstantC, mLengthC;
};
}