You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
358 lines
14 KiB
358 lines
14 KiB
// David Eberly, Geometric Tools, Redmond WA 98052
|
|
// Copyright (c) 1998-2021
|
|
// Distributed under the Boost Software License, Version 1.0.
|
|
// https://www.boost.org/LICENSE_1_0.txt
|
|
// https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
|
|
// Version: 4.0.2020.01.10
|
|
|
|
#pragma once
|
|
|
|
#include <Mathematics/Vector.h>
|
|
|
|
namespace gte
|
|
{
|
|
// Template alias for convenience.
|
|
template <typename Real>
|
|
using Vector3 = Vector<3, Real>;
|
|
|
|
// Cross, UnitCross, and DotCross have a template parameter N that should
|
|
// be 3 or 4. The latter case supports affine vectors in 4D (last
|
|
// component w = 0) when you want to use 4-tuples and 4x4 matrices for
|
|
// affine algebra.
|
|
|
|
// Compute the cross product using the formal determinant:
|
|
// cross = det{{e0,e1,e2},{x0,x1,x2},{y0,y1,y2}}
|
|
// = (x1*y2-x2*y1, x2*y0-x0*y2, x0*y1-x1*y0)
|
|
// where e0 = (1,0,0), e1 = (0,1,0), e2 = (0,0,1), v0 = (x0,x1,x2), and
|
|
// v1 = (y0,y1,y2).
|
|
template <int N, typename Real>
|
|
Vector<N, Real> Cross(Vector<N, Real> const& v0, Vector<N, Real> const& v1)
|
|
{
|
|
static_assert(N == 3 || N == 4, "Dimension must be 3 or 4.");
|
|
|
|
Vector<N, Real> result;
|
|
result.MakeZero();
|
|
result[0] = v0[1] * v1[2] - v0[2] * v1[1];
|
|
result[1] = v0[2] * v1[0] - v0[0] * v1[2];
|
|
result[2] = v0[0] * v1[1] - v0[1] * v1[0];
|
|
return result;
|
|
}
|
|
|
|
// Compute the normalized cross product.
|
|
template <int N, typename Real>
|
|
Vector<N, Real> UnitCross(Vector<N, Real> const& v0, Vector<N, Real> const& v1, bool robust = false)
|
|
{
|
|
static_assert(N == 3 || N == 4, "Dimension must be 3 or 4.");
|
|
Vector<N, Real> unitCross = Cross(v0, v1);
|
|
Normalize(unitCross, robust);
|
|
return unitCross;
|
|
}
|
|
|
|
// Compute Dot((x0,x1,x2),Cross((y0,y1,y2),(z0,z1,z2)), the triple scalar
|
|
// product of three vectors, where v0 = (x0,x1,x2), v1 = (y0,y1,y2), and
|
|
// v2 is (z0,z1,z2).
|
|
template <int N, typename Real>
|
|
Real DotCross(Vector<N, Real> const& v0, Vector<N, Real> const& v1,
|
|
Vector<N, Real> const& v2)
|
|
{
|
|
static_assert(N == 3 || N == 4, "Dimension must be 3 or 4.");
|
|
return Dot(v0, Cross(v1, v2));
|
|
}
|
|
|
|
// Compute a right-handed orthonormal basis for the orthogonal complement
|
|
// of the input vectors. The function returns the smallest length of the
|
|
// unnormalized vectors computed during the process. If this value is
|
|
// nearly zero, it is possible that the inputs are linearly dependent
|
|
// (within numerical round-off errors). On input, numInputs must be 1 or
|
|
// 2 and v[0] through v[numInputs-1] must be initialized. On output, the
|
|
// vectors v[0] through v[2] form an orthonormal set.
|
|
template <typename Real>
|
|
Real ComputeOrthogonalComplement(int numInputs, Vector3<Real>* v, bool robust = false)
|
|
{
|
|
if (numInputs == 1)
|
|
{
|
|
if (std::fabs(v[0][0]) > std::fabs(v[0][1]))
|
|
{
|
|
v[1] = { -v[0][2], (Real)0, +v[0][0] };
|
|
}
|
|
else
|
|
{
|
|
v[1] = { (Real)0, +v[0][2], -v[0][1] };
|
|
}
|
|
numInputs = 2;
|
|
}
|
|
|
|
if (numInputs == 2)
|
|
{
|
|
v[2] = Cross(v[0], v[1]);
|
|
return Orthonormalize<3, Real>(3, v, robust);
|
|
}
|
|
|
|
return (Real)0;
|
|
}
|
|
|
|
// Compute the barycentric coordinates of the point P with respect to the
|
|
// tetrahedron <V0,V1,V2,V3>, P = b0*V0 + b1*V1 + b2*V2 + b3*V3, where
|
|
// b0 + b1 + b2 + b3 = 1. The return value is 'true' iff {V0,V1,V2,V3} is
|
|
// a linearly independent set. Numerically, this is measured by
|
|
// |det[V0 V1 V2 V3]| <= epsilon. The values bary[] are valid only when
|
|
// the return value is 'true' but set to zero when the return value is
|
|
// 'false'.
|
|
template <typename Real>
|
|
bool ComputeBarycentrics(Vector3<Real> const& p, Vector3<Real> const& v0,
|
|
Vector3<Real> const& v1, Vector3<Real> const& v2, Vector3<Real> const& v3,
|
|
Real bary[4], Real epsilon = (Real)0)
|
|
{
|
|
// Compute the vectors relative to V3 of the tetrahedron.
|
|
Vector3<Real> diff[4] = { v0 - v3, v1 - v3, v2 - v3, p - v3 };
|
|
|
|
Real det = DotCross(diff[0], diff[1], diff[2]);
|
|
if (det < -epsilon || det > epsilon)
|
|
{
|
|
Real invDet = ((Real)1) / det;
|
|
bary[0] = DotCross(diff[3], diff[1], diff[2]) * invDet;
|
|
bary[1] = DotCross(diff[3], diff[2], diff[0]) * invDet;
|
|
bary[2] = DotCross(diff[3], diff[0], diff[1]) * invDet;
|
|
bary[3] = (Real)1 - bary[0] - bary[1] - bary[2];
|
|
return true;
|
|
}
|
|
|
|
for (int i = 0; i < 4; ++i)
|
|
{
|
|
bary[i] = (Real)0;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Get intrinsic information about the input array of vectors. The return
|
|
// value is 'true' iff the inputs are valid (numVectors > 0, v is not
|
|
// null, and epsilon >= 0), in which case the class members are valid.
|
|
template <typename Real>
|
|
class IntrinsicsVector3
|
|
{
|
|
public:
|
|
// The constructor sets the class members based on the input set.
|
|
IntrinsicsVector3(int numVectors, Vector3<Real> const* v, Real inEpsilon)
|
|
:
|
|
epsilon(inEpsilon),
|
|
dimension(0),
|
|
maxRange((Real)0),
|
|
origin{ (Real)0, (Real)0, (Real)0 },
|
|
extremeCCW(false)
|
|
{
|
|
min[0] = (Real)0;
|
|
min[1] = (Real)0;
|
|
min[2] = (Real)0;
|
|
direction[0] = { (Real)0, (Real)0, (Real)0 };
|
|
direction[1] = { (Real)0, (Real)0, (Real)0 };
|
|
direction[2] = { (Real)0, (Real)0, (Real)0 };
|
|
extreme[0] = 0;
|
|
extreme[1] = 0;
|
|
extreme[2] = 0;
|
|
extreme[3] = 0;
|
|
|
|
if (numVectors > 0 && v && epsilon >= (Real)0)
|
|
{
|
|
// Compute the axis-aligned bounding box for the input vectors.
|
|
// Keep track of the indices into 'vectors' for the current
|
|
// min and max.
|
|
int j, indexMin[3], indexMax[3];
|
|
for (j = 0; j < 3; ++j)
|
|
{
|
|
min[j] = v[0][j];
|
|
max[j] = min[j];
|
|
indexMin[j] = 0;
|
|
indexMax[j] = 0;
|
|
}
|
|
|
|
int i;
|
|
for (i = 1; i < numVectors; ++i)
|
|
{
|
|
for (j = 0; j < 3; ++j)
|
|
{
|
|
if (v[i][j] < min[j])
|
|
{
|
|
min[j] = v[i][j];
|
|
indexMin[j] = i;
|
|
}
|
|
else if (v[i][j] > max[j])
|
|
{
|
|
max[j] = v[i][j];
|
|
indexMax[j] = i;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Determine the maximum range for the bounding box.
|
|
maxRange = max[0] - min[0];
|
|
extreme[0] = indexMin[0];
|
|
extreme[1] = indexMax[0];
|
|
Real range = max[1] - min[1];
|
|
if (range > maxRange)
|
|
{
|
|
maxRange = range;
|
|
extreme[0] = indexMin[1];
|
|
extreme[1] = indexMax[1];
|
|
}
|
|
range = max[2] - min[2];
|
|
if (range > maxRange)
|
|
{
|
|
maxRange = range;
|
|
extreme[0] = indexMin[2];
|
|
extreme[1] = indexMax[2];
|
|
}
|
|
|
|
// The origin is either the vector of minimum x0-value, vector
|
|
// of minimum x1-value, or vector of minimum x2-value.
|
|
origin = v[extreme[0]];
|
|
|
|
// Test whether the vector set is (nearly) a vector.
|
|
if (maxRange <= epsilon)
|
|
{
|
|
dimension = 0;
|
|
for (j = 0; j < 3; ++j)
|
|
{
|
|
extreme[j + 1] = extreme[0];
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Test whether the vector set is (nearly) a line segment. We
|
|
// need {direction[2],direction[3]} to span the orthogonal
|
|
// complement of direction[0].
|
|
direction[0] = v[extreme[1]] - origin;
|
|
Normalize(direction[0], false);
|
|
if (std::fabs(direction[0][0]) > std::fabs(direction[0][1]))
|
|
{
|
|
direction[1][0] = -direction[0][2];
|
|
direction[1][1] = (Real)0;
|
|
direction[1][2] = +direction[0][0];
|
|
}
|
|
else
|
|
{
|
|
direction[1][0] = (Real)0;
|
|
direction[1][1] = +direction[0][2];
|
|
direction[1][2] = -direction[0][1];
|
|
}
|
|
Normalize(direction[1], false);
|
|
direction[2] = Cross(direction[0], direction[1]);
|
|
|
|
// Compute the maximum distance of the points from the line
|
|
// origin + t * direction[0].
|
|
Real maxDistance = (Real)0;
|
|
Real distance, dot;
|
|
extreme[2] = extreme[0];
|
|
for (i = 0; i < numVectors; ++i)
|
|
{
|
|
Vector3<Real> diff = v[i] - origin;
|
|
dot = Dot(direction[0], diff);
|
|
Vector3<Real> proj = diff - dot * direction[0];
|
|
distance = Length(proj, false);
|
|
if (distance > maxDistance)
|
|
{
|
|
maxDistance = distance;
|
|
extreme[2] = i;
|
|
}
|
|
}
|
|
|
|
if (maxDistance <= epsilon * maxRange)
|
|
{
|
|
// The points are (nearly) on the line
|
|
// origin + t * direction[0].
|
|
dimension = 1;
|
|
extreme[2] = extreme[1];
|
|
extreme[3] = extreme[1];
|
|
return;
|
|
}
|
|
|
|
// Test whether the vector set is (nearly) a planar polygon.
|
|
// The point v[extreme[2]] is farthest from the line:
|
|
// origin + t * direction[0]. The vector
|
|
// v[extreme[2]] - origin is not necessarily perpendicular to
|
|
// direction[0], so project out the direction[0] component so
|
|
// that the result is perpendicular to direction[0].
|
|
direction[1] = v[extreme[2]] - origin;
|
|
dot = Dot(direction[0], direction[1]);
|
|
direction[1] -= dot * direction[0];
|
|
Normalize(direction[1], false);
|
|
|
|
// We need direction[2] to span the orthogonal complement of
|
|
// {direction[0],direction[1]}.
|
|
direction[2] = Cross(direction[0], direction[1]);
|
|
|
|
// Compute the maximum distance of the points from the plane
|
|
// origin+t0 * direction[0] + t1 * direction[1].
|
|
maxDistance = (Real)0;
|
|
Real maxSign = (Real)0;
|
|
extreme[3] = extreme[0];
|
|
for (i = 0; i < numVectors; ++i)
|
|
{
|
|
Vector3<Real> diff = v[i] - origin;
|
|
distance = Dot(direction[2], diff);
|
|
Real sign = (distance > (Real)0 ? (Real)1 :
|
|
(distance < (Real)0 ? (Real)-1 : (Real)0));
|
|
distance = std::fabs(distance);
|
|
if (distance > maxDistance)
|
|
{
|
|
maxDistance = distance;
|
|
maxSign = sign;
|
|
extreme[3] = i;
|
|
}
|
|
}
|
|
|
|
if (maxDistance <= epsilon * maxRange)
|
|
{
|
|
// The points are (nearly) on the plane
|
|
// origin + t0 * direction[0] + t1 * direction[1].
|
|
dimension = 2;
|
|
extreme[3] = extreme[2];
|
|
return;
|
|
}
|
|
|
|
dimension = 3;
|
|
extremeCCW = (maxSign > (Real)0);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// A nonnegative tolerance that is used to determine the intrinsic
|
|
// dimension of the set.
|
|
Real epsilon;
|
|
|
|
// The intrinsic dimension of the input set, computed based on the
|
|
// nonnegative tolerance mEpsilon.
|
|
int dimension;
|
|
|
|
// Axis-aligned bounding box of the input set. The maximum range is
|
|
// the larger of max[0]-min[0], max[1]-min[1], and max[2]-min[2].
|
|
Real min[3], max[3];
|
|
Real maxRange;
|
|
|
|
// Coordinate system. The origin is valid for any dimension d. The
|
|
// unit-length direction vector is valid only for 0 <= i < d. The
|
|
// extreme index is relative to the array of input points, and is also
|
|
// valid only for 0 <= i < d. If d = 0, all points are effectively
|
|
// the same, but the use of an epsilon may lead to an extreme index
|
|
// that is not zero. If d = 1, all points effectively lie on a line
|
|
// segment. If d = 2, all points effectively line on a plane. If
|
|
// d = 3, the points are not coplanar.
|
|
Vector3<Real> origin;
|
|
Vector3<Real> direction[3];
|
|
|
|
// The indices that define the maximum dimensional extents. The
|
|
// values extreme[0] and extreme[1] are the indices for the points
|
|
// that define the largest extent in one of the coordinate axis
|
|
// directions. If the dimension is 2, then extreme[2] is the index
|
|
// for the point that generates the largest extent in the direction
|
|
// perpendicular to the line through the points corresponding to
|
|
// extreme[0] and extreme[1]. Furthermore, if the dimension is 3,
|
|
// then extreme[3] is the index for the point that generates the
|
|
// largest extent in the direction perpendicular to the triangle
|
|
// defined by the other extreme points. The tetrahedron formed by the
|
|
// points V[extreme[0]], V[extreme[1]], V[extreme[2]], and
|
|
// V[extreme[3]] is clockwise or counterclockwise, the condition
|
|
// stored in extremeCCW.
|
|
int extreme[4];
|
|
bool extremeCCW;
|
|
};
|
|
}
|
|
|