You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
230 lines
7.5 KiB
230 lines
7.5 KiB
// David Eberly, Geometric Tools, Redmond WA 98052
|
|
// Copyright (c) 1998-2021
|
|
// Distributed under the Boost Software License, Version 1.0.
|
|
// https://www.boost.org/LICENSE_1_0.txt
|
|
// https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
|
|
// Version: 4.0.2019.08.13
|
|
|
|
#pragma once
|
|
|
|
#include <Mathematics/Vector3.h>
|
|
|
|
// A torus with origin (0,0,0), outer radius r0 and inner radius r1 (with
|
|
// (r0 >= r1) is defined implicitly as follows. The point P0 = (x,y,z) is on
|
|
// the torus. Its projection onto the xy-plane is P1 = (x,y,0). The circular
|
|
// cross section of the torus that contains the projection has radius r0 and
|
|
// center P2 = r0*(x,y,0)/sqrt(x^2+y^2). The points triangle <P0,P1,P2> is a
|
|
// right triangle with right angle at P1. The hypotenuse <P0,P2> has length
|
|
// r1, leg <P1,P2> has length z and leg <P0,P1> has length
|
|
// |r0 - sqrt(x^2+y^2)|. The Pythagorean theorem says
|
|
// z^2 + |r0 - sqrt(x^2+y^2)|^2 = r1^2. This can be algebraically
|
|
// manipulated to
|
|
// (x^2 + y^2 + z^2 + r0^2 - r1^2)^2 - 4 * r0^2 * (x^2 + y^2) = 0
|
|
//
|
|
// A parametric form is
|
|
// x = (r0 + r1 * cos(v)) * cos(u)
|
|
// y = (r0 + r1 * cos(v)) * sin(u)
|
|
// z = r1 * sin(v)
|
|
// for u in [0,2*pi) and v in [0,2*pi).
|
|
//
|
|
// Generally, let the torus center be C with plane of symmetry containing C
|
|
// and having directions D0 and D1. The axis of symmetry is the line
|
|
// containing C and having direction N (the plane normal). The radius from
|
|
// the center of the torus is r0 and the radius of the tube of the torus is
|
|
// r1. A point P may be written as P = C + x*D0 + y*D1 + z*N, where matrix
|
|
// [D0 D1 N] is orthonormal and has determinant 1. Thus, x = Dot(D0,P-C),
|
|
// y = Dot(D1,P-C) and z = Dot(N,P-C). The implicit form is
|
|
// [|P-C|^2 + r0^2 - r1^2]^2 - 4*r0^2*[|P-C|^2 - (Dot(N,P-C))^2] = 0
|
|
// Observe that D0 and D1 are not present in the equation, which is to be
|
|
// expected by the symmetry. The parametric form is
|
|
// P(u,v) = C + (r0 + r1*cos(v))*(cos(u)*D0 + sin(u)*D1) + r1*sin(v)*N
|
|
// for u in [0,2*pi) and v in [0,2*pi).
|
|
//
|
|
// In the class Torus3, the members are 'center' C, 'direction0' D0,
|
|
// 'direction1' D1, 'normal' N, 'radius0' r0 and 'radius1' r1.
|
|
|
|
namespace gte
|
|
{
|
|
template <typename Real>
|
|
class Torus3
|
|
{
|
|
public:
|
|
// Construction and destruction. The default constructor sets center
|
|
// to (0,0,0), direction0 to (1,0,0), direction1 to (0,1,0), normal
|
|
// to (0,0,1), radius0 to 2 and radius1 to 1.
|
|
Torus3()
|
|
:
|
|
center(Vector3<Real>::Zero()),
|
|
direction0(Vector3<Real>::Unit(0)),
|
|
direction1(Vector3<Real>::Unit(1)),
|
|
normal(Vector3<Real>::Unit(2)),
|
|
radius0((Real)2),
|
|
radius1((Real)1)
|
|
{
|
|
}
|
|
|
|
Torus3(Vector3<Real> const& inCenter, Vector3<Real> const& inDirection0,
|
|
Vector3<Real> const& inDirection1, Vector3<Real> const& inNormal,
|
|
Real inRadius0, Real inRadius1)
|
|
:
|
|
center(inCenter),
|
|
direction0(inDirection0),
|
|
direction1(inDirection1),
|
|
normal(inNormal),
|
|
radius0(inRadius0),
|
|
radius1(inRadius1)
|
|
{
|
|
}
|
|
|
|
// Evaluation of the surface. The function supports derivative
|
|
// calculation through order 2; that is, maxOrder <= 2 is required.
|
|
// If you want only the position, pass in maxOrder of 0. If you want
|
|
// the position and first-order derivatives, pass in maxOrder of 1,
|
|
// and so on. The output 'values' are ordered as: position X;
|
|
// first-order derivatives dX/du, dX/dv; second-order derivatives
|
|
// d2X/du2, d2X/dudv, d2X/dv2. The input array 'jet' must have enough
|
|
// storage for the specified order.
|
|
void Evaluate(Real u, Real v, unsigned int maxOrder, Vector3<Real>* jet) const
|
|
{
|
|
// Compute position.
|
|
Real csu = std::cos(u);
|
|
Real snu = std::sin(u);
|
|
Real csv = std::cos(v);
|
|
Real snv = std::sin(v);
|
|
Real r1csv = radius1 * csv;
|
|
Real r1snv = radius1 * snv;
|
|
Real r0pr1csv = radius0 + r1csv;
|
|
Vector3<Real> combo0 = csu * direction0 + snu * direction1;
|
|
Vector3<Real> r0pr1csvcombo0 = r0pr1csv * combo0;
|
|
Vector3<Real> r1snvnormal = r1snv * normal;
|
|
jet[0] = center + r0pr1csvcombo0 + r1snvnormal;
|
|
|
|
if (maxOrder >= 1)
|
|
{
|
|
// Compute first-order derivatives.
|
|
Vector3<Real> combo1 = -snu * direction0 + csu * direction1;
|
|
jet[1] = r0pr1csv * combo1;
|
|
jet[2] = -r1snv * combo0 + r1csv * normal;
|
|
|
|
if (maxOrder == 2)
|
|
{
|
|
// Compute second-order derivatives.
|
|
jet[3] = -r0pr1csvcombo0;
|
|
jet[4] = -r1snv * combo1;
|
|
jet[5] = -r1csv * combo0 - r1snvnormal;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Reverse lookup of parameters from position.
|
|
void GetParameters(Vector3<Real> const& X, Real& u, Real& v) const
|
|
{
|
|
Vector3<Real> delta = X - center;
|
|
|
|
// (r0 + r1*cos(v))*cos(u)
|
|
Real dot0 = Dot(direction0, delta);
|
|
|
|
// (r0 + r1*cos(v))*sin(u)
|
|
Real dot1 = Dot(direction1, delta);
|
|
|
|
// r1*sin(v)
|
|
Real dot2 = Dot(normal, delta);
|
|
|
|
// r1*cos(v)
|
|
Real r1csv = std::sqrt(dot0 * dot0 + dot1 * dot1) - radius0;
|
|
|
|
u = std::atan2(dot1, dot0);
|
|
v = std::atan2(dot2, r1csv);
|
|
}
|
|
|
|
Vector3<Real> center, direction0, direction1, normal;
|
|
Real radius0, radius1;
|
|
|
|
public:
|
|
// Comparisons to support sorted containers.
|
|
bool operator==(Torus3 const& torus) const
|
|
{
|
|
return center == torus.center
|
|
&& direction0 == torus.direction0
|
|
&& direction1 == torus.direction1
|
|
&& normal == torus.normal
|
|
&& radius0 == torus.radius0
|
|
&& radius1 == torus.radius1;
|
|
}
|
|
|
|
bool operator!=(Torus3 const& torus) const
|
|
{
|
|
return !operator==(torus);
|
|
}
|
|
|
|
bool operator< (Torus3 const& torus) const
|
|
{
|
|
if (center < torus.center)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
if (center > torus.center)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
if (direction0 < torus.direction0)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
if (direction0 > torus.direction0)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
if (direction1 < torus.direction1)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
if (direction1 > torus.direction1)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
if (normal < torus.normal)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
if (normal > torus.normal)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
if (radius0 < torus.radius0)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
if (radius0 > torus.radius0)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
return radius1 < torus.radius1;
|
|
}
|
|
|
|
bool operator<=(Torus3 const& torus) const
|
|
{
|
|
return !torus.operator<(*this);
|
|
}
|
|
|
|
bool operator> (Torus3 const& torus) const
|
|
{
|
|
return torus.operator<(*this);
|
|
}
|
|
|
|
bool operator>=(Torus3 const& torus) const
|
|
{
|
|
return !operator<(torus);
|
|
}
|
|
};
|
|
}
|
|
|