You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

400 lines
13 KiB

// David Eberly, Geometric Tools, Redmond WA 98052
// Copyright (c) 1998-2021
// Distributed under the Boost Software License, Version 1.0.
// https://www.boost.org/LICENSE_1_0.txt
// https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
// Version: 4.0.2019.10.17
#pragma once
#include <Mathematics/Vector2.h>
// Queries about the relation of a point to various geometric objects. The
// choices for N when using UIntegerFP32<N> for either BSNumber of BSRational
// are determined in GeometricTools/GTEngine/Tools/PrecisionCalculator. These
// N-values are worst case scenarios. Your specific input data might require
// much smaller N, in which case you can modify PrecisionCalculator to use the
// BSPrecision(int32_t,int32_t,int32_t,bool) constructors.
namespace gte
{
template <typename Real>
class PrimalQuery2
{
public:
// The caller is responsible for ensuring that the array is not empty
// before calling queries and that the indices passed to the queries
// are valid. The class does no range checking.
PrimalQuery2()
:
mNumVertices(0),
mVertices(nullptr)
{
}
PrimalQuery2(int numVertices, Vector2<Real> const* vertices)
:
mNumVertices(numVertices),
mVertices(vertices)
{
}
// Member access.
inline void Set(int numVertices, Vector2<Real> const* vertices)
{
mNumVertices = numVertices;
mVertices = vertices;
}
inline int GetNumVertices() const
{
return mNumVertices;
}
inline Vector2<Real> const* GetVertices() const
{
return mVertices;
}
// In the following, point P refers to vertices[i] or 'test' and Vi
// refers to vertices[vi].
// For a line with origin V0 and direction <V0,V1>, ToLine returns
// +1, P on right of line
// -1, P on left of line
// 0, P on the line
//
// Choice of N for UIntegerFP32<N>.
// input type | compute type | N
// -----------+--------------+----
// float | BSNumber | 18
// double | BSNumber | 132
// float | BSRational | 35
// double | BSRational | 263
int ToLine(int i, int v0, int v1) const
{
return ToLine(mVertices[i], v0, v1);
}
int ToLine(Vector2<Real> const& test, int v0, int v1) const
{
Vector2<Real> const& vec0 = mVertices[v0];
Vector2<Real> const& vec1 = mVertices[v1];
Real x0 = test[0] - vec0[0];
Real y0 = test[1] - vec0[1];
Real x1 = vec1[0] - vec0[0];
Real y1 = vec1[1] - vec0[1];
Real x0y1 = x0 * y1;
Real x1y0 = x1 * y0;
Real det = x0y1 - x1y0;
Real const zero(0);
return (det > zero ? +1 : (det < zero ? -1 : 0));
}
// For a line with origin V0 and direction <V0,V1>, ToLine returns
// +1, P on right of line
// -1, P on left of line
// 0, P on the line
// The 'order' parameter is
// -3, points not collinear, P on left of line
// -2, P strictly left of V0 on the line
// -1, P = V0
// 0, P interior to line segment [V0,V1]
// +1, P = V1
// +2, P strictly right of V0 on the line
//
// Choice of N for UIntegerFP32<N>.
// input type | compute type | N
// -----------+--------------+----
// float | BSNumber | 18
// double | BSNumber | 132
// float | BSRational | 35
// double | BSRational | 263
// This is the same as the first-listed ToLine calls because the
// worst-case path has the same computational complexity.
int ToLine(int i, int v0, int v1, int& order) const
{
return ToLine(mVertices[i], v0, v1, order);
}
int ToLine(Vector2<Real> const& test, int v0, int v1, int& order) const
{
Vector2<Real> const& vec0 = mVertices[v0];
Vector2<Real> const& vec1 = mVertices[v1];
Real x0 = test[0] - vec0[0];
Real y0 = test[1] - vec0[1];
Real x1 = vec1[0] - vec0[0];
Real y1 = vec1[1] - vec0[1];
Real x0y1 = x0 * y1;
Real x1y0 = x1 * y0;
Real det = x0y1 - x1y0;
Real const zero(0);
if (det > zero)
{
order = +3;
return +1;
}
if (det < zero)
{
order = -3;
return -1;
}
Real x0x1 = x0 * x1;
Real y0y1 = y0 * y1;
Real dot = x0x1 + y0y1;
if (dot == zero)
{
order = -1;
}
else if (dot < zero)
{
order = -2;
}
else
{
Real x0x0 = x0 * x0;
Real y0y0 = y0 * y0;
Real sqrLength = x0x0 + y0y0;
if (dot == sqrLength)
{
order = +1;
}
else if (dot > sqrLength)
{
order = +2;
}
else
{
order = 0;
}
}
return 0;
}
// For a triangle with counterclockwise vertices V0, V1, and V2,
// ToTriangle returns
// +1, P outside triangle
// -1, P inside triangle
// 0, P on triangle
//
// Choice of N for UIntegerFP32<N>.
// input type | compute type | N
// -----------+--------------+-----
// float | BSNumber | 18
// double | BSNumber | 132
// float | BSRational | 35
// double | BSRational | 263
// The query involves three calls to ToLine, so the numbers match
// those of ToLine.
int ToTriangle(int i, int v0, int v1, int v2) const
{
return ToTriangle(mVertices[i], v0, v1, v2);
}
int ToTriangle(Vector2<Real> const& test, int v0, int v1, int v2) const
{
int sign0 = ToLine(test, v1, v2);
if (sign0 > 0)
{
return +1;
}
int sign1 = ToLine(test, v0, v2);
if (sign1 < 0)
{
return +1;
}
int sign2 = ToLine(test, v0, v1);
if (sign2 > 0)
{
return +1;
}
return ((sign0 && sign1 && sign2) ? -1 : 0);
}
// For a triangle with counterclockwise vertices V0, V1, and V2,
// ToCircumcircle returns
// +1, P outside circumcircle of triangle
// -1, P inside circumcircle of triangle
// 0, P on circumcircle of triangle
//
// Choice of N for UIntegerFP32<N>.
// input type | compute type | N
// -----------+--------------+----
// float | BSNumber | 35
// double | BSNumber | 263
// float | BSRational | 105
// double | BSRational | 788
// The query involves three calls of ToLine, so the numbers match
// those of ToLine.
int ToCircumcircle(int i, int v0, int v1, int v2) const
{
return ToCircumcircle(mVertices[i], v0, v1, v2);
}
int ToCircumcircle(Vector2<Real> const& test, int v0, int v1, int v2) const
{
Vector2<Real> const& vec0 = mVertices[v0];
Vector2<Real> const& vec1 = mVertices[v1];
Vector2<Real> const& vec2 = mVertices[v2];
Real x0 = vec0[0] - test[0];
Real y0 = vec0[1] - test[1];
Real s00 = vec0[0] + test[0];
Real s01 = vec0[1] + test[1];
Real t00 = s00 * x0;
Real t01 = s01 * y0;
Real z0 = t00 + t01;
Real x1 = vec1[0] - test[0];
Real y1 = vec1[1] - test[1];
Real s10 = vec1[0] + test[0];
Real s11 = vec1[1] + test[1];
Real t10 = s10 * x1;
Real t11 = s11 * y1;
Real z1 = t10 + t11;
Real x2 = vec2[0] - test[0];
Real y2 = vec2[1] - test[1];
Real s20 = vec2[0] + test[0];
Real s21 = vec2[1] + test[1];
Real t20 = s20 * x2;
Real t21 = s21 * y2;
Real z2 = t20 + t21;
Real y0z1 = y0 * z1;
Real y0z2 = y0 * z2;
Real y1z0 = y1 * z0;
Real y1z2 = y1 * z2;
Real y2z0 = y2 * z0;
Real y2z1 = y2 * z1;
Real c0 = y1z2 - y2z1;
Real c1 = y2z0 - y0z2;
Real c2 = y0z1 - y1z0;
Real x0c0 = x0 * c0;
Real x1c1 = x1 * c1;
Real x2c2 = x2 * c2;
Real term = x0c0 + x1c1;
Real det = term + x2c2;
Real const zero(0);
return (det < zero ? 1 : (det > zero ? -1 : 0));
}
// An extended classification of the relationship of a point to a line
// segment. For noncollinear points, the return value is
// ORDER_POSITIVE when <P,Q0,Q1> is a counterclockwise triangle
// ORDER_NEGATIVE when <P,Q0,Q1> is a clockwise triangle
// For collinear points, the line direction is Q1-Q0. The return
// value is
// ORDER_COLLINEAR_LEFT when the line ordering is <P,Q0,Q1>
// ORDER_COLLINEAR_RIGHT when the line ordering is <Q0,Q1,P>
// ORDER_COLLINEAR_CONTAIN when the line ordering is <Q0,P,Q1>
enum OrderType
{
ORDER_Q0_EQUALS_Q1,
ORDER_P_EQUALS_Q0,
ORDER_P_EQUALS_Q1,
ORDER_POSITIVE,
ORDER_NEGATIVE,
ORDER_COLLINEAR_LEFT,
ORDER_COLLINEAR_RIGHT,
ORDER_COLLINEAR_CONTAIN
};
// Choice of N for UIntegerFP32<N>.
// input type | compute type | N
// -----------+--------------+----
// float | BSNumber | 18
// double | BSNumber | 132
// float | BSRational | 35
// double | BSRational | 263
// This is the same as the first-listed ToLine calls because the
// worst-case path has the same computational complexity.
OrderType ToLineExtended(Vector2<Real> const& P, Vector2<Real> const& Q0, Vector2<Real> const& Q1) const
{
Real const zero(0);
Real x0 = Q1[0] - Q0[0];
Real y0 = Q1[1] - Q0[1];
if (x0 == zero && y0 == zero)
{
return ORDER_Q0_EQUALS_Q1;
}
Real x1 = P[0] - Q0[0];
Real y1 = P[1] - Q0[1];
if (x1 == zero && y1 == zero)
{
return ORDER_P_EQUALS_Q0;
}
Real x2 = P[0] - Q1[0];
Real y2 = P[1] - Q1[1];
if (x2 == zero && y2 == zero)
{
return ORDER_P_EQUALS_Q1;
}
// The theoretical classification relies on computing exactly the
// sign of the determinant. Numerical roundoff errors can cause
// misclassification.
Real x0y1 = x0 * y1;
Real x1y0 = x1 * y0;
Real det = x0y1 - x1y0;
if (det != zero)
{
if (det > zero)
{
// The points form a counterclockwise triangle <P,Q0,Q1>.
return ORDER_POSITIVE;
}
else
{
// The points form a clockwise triangle <P,Q1,Q0>.
return ORDER_NEGATIVE;
}
}
else
{
// The points are collinear; P is on the line through
// Q0 and Q1.
Real x0x1 = x0 * x1;
Real y0y1 = y0 * y1;
Real dot = x0x1 + y0y1;
if (dot < zero)
{
// The line ordering is <P,Q0,Q1>.
return ORDER_COLLINEAR_LEFT;
}
Real x0x0 = x0 * x0;
Real y0y0 = y0 * y0;
Real sqrLength = x0x0 + y0y0;
if (dot > sqrLength)
{
// The line ordering is <Q0,Q1,P>.
return ORDER_COLLINEAR_RIGHT;
}
// The line ordering is <Q0,P,Q1> with P strictly between
// Q0 and Q1.
return ORDER_COLLINEAR_CONTAIN;
}
}
private:
int mNumVertices;
Vector2<Real> const* mVertices;
};
}