You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

443 lines
17 KiB

// David Eberly, Geometric Tools, Redmond WA 98052
// Copyright (c) 1998-2021
// Distributed under the Boost Software License, Version 1.0.
// https://www.boost.org/LICENSE_1_0.txt
// https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
// Version: 4.0.2019.08.13
#pragma once
#include <Mathematics/Logger.h>
#include <Mathematics/ContCircle2.h>
#include <Mathematics/Hypersphere.h>
#include <Mathematics/LinearSystem.h>
#include <functional>
#include <random>
// Compute the minimum area circle containing the input set of points. The
// algorithm randomly permutes the input points so that the construction
// occurs in 'expected' O(N) time. All internal minimal circle calculations
// store the squared radius in the radius member of Circle2. Only at the
// end is a sqrt computed.
//
// The most robust choice for ComputeType is BSRational<T> for exact rational
// arithmetic. As long as this code is a correct implementation of the theory
// (which I hope it is), you will obtain the minimum-area circle containing
// the points.
//
// Instead, if you choose ComputeType to be float or double, floating-point
// rounding errors can cause the UpdateSupport{2,3} functions to fail.
// The failure is trapped in those functions and a simple bounding circle is
// computed using GetContainer in file GteContCircle2.h. This circle is
// generally not the minimum-area circle containing the points. The
// minimum-area algorithm is terminated immediately. The circle is returned
// as well as a bool value of 'true' when the circle is minimum area or
// 'false' when the failure is trapped. When 'false' is returned, you can
// try another call to the operator()(...) function. The random shuffle
// that occurs is highly likely to be different from the previous shuffle,
// and there is a chance that the algorithm can succeed just because of the
// different ordering of points.
namespace gte
{
template <typename InputType, typename ComputeType>
class MinimumAreaCircle2
{
public:
bool operator()(int numPoints, Vector2<InputType> const* points, Circle2<InputType>& minimal)
{
if (numPoints >= 1 && points)
{
// Function array to avoid switch statement in the main loop.
std::function<UpdateResult(int)> update[4];
update[1] = [this](int i) { return UpdateSupport1(i); };
update[2] = [this](int i) { return UpdateSupport2(i); };
update[3] = [this](int i) { return UpdateSupport3(i); };
// Process only the unique points.
std::vector<int> permuted(numPoints);
for (int i = 0; i < numPoints; ++i)
{
permuted[i] = i;
}
std::sort(permuted.begin(), permuted.end(),
[points](int i0, int i1) { return points[i0] < points[i1]; });
auto end = std::unique(permuted.begin(), permuted.end(),
[points](int i0, int i1) { return points[i0] == points[i1]; });
permuted.erase(end, permuted.end());
numPoints = static_cast<int>(permuted.size());
// Create a random permutation of the points.
std::shuffle(permuted.begin(), permuted.end(), mDRE);
// Convert to the compute type, which is a simple copy when
// ComputeType is the same as InputType.
mComputePoints.resize(numPoints);
for (int i = 0; i < numPoints; ++i)
{
for (int j = 0; j < 2; ++j)
{
mComputePoints[i][j] = points[permuted[i]][j];
}
}
// Start with the first point.
Circle2<ComputeType> ctMinimal = ExactCircle1(0);
mNumSupport = 1;
mSupport[0] = 0;
// The loop restarts from the beginning of the point list each
// time the circle needs updating. Linus K�llberg (Computer
// Science at M�lardalen University in Sweden) discovered that
// performance is better when the remaining points in the
// array are processed before restarting. The points
// processed before the point that caused the update are
// likely to be enclosed by the new circle (or near the circle
// boundary) because they were enclosed by the previous
// circle. The chances are better that points after the
// current one will cause growth of the bounding circle.
for (int i = 1 % numPoints, n = 0; i != n; i = (i + 1) % numPoints)
{
if (!SupportContains(i))
{
if (!Contains(i, ctMinimal))
{
auto result = update[mNumSupport](i);
if (result.second == true)
{
if (result.first.radius > ctMinimal.radius)
{
ctMinimal = result.first;
n = i;
}
}
else
{
// This case can happen when ComputeType is
// float or double. See the comments at the
// beginning of this file. ComputeType is not
// exact and failure occurred. Returning
// non-minimal circle. TODO: Should we throw
// an exception?
GetContainer(numPoints, points, minimal);
mNumSupport = 0;
mSupport.fill(0);
return false;
}
}
}
}
for (int j = 0; j < 2; ++j)
{
minimal.center[j] = static_cast<InputType>(ctMinimal.center[j]);
}
minimal.radius = static_cast<InputType>(ctMinimal.radius);
minimal.radius = std::sqrt(minimal.radius);
for (int i = 0; i < mNumSupport; ++i)
{
mSupport[i] = permuted[mSupport[i]];
}
return true;
}
else
{
LogError("Input must contain points.");
}
}
// Member access.
inline int GetNumSupport() const
{
return mNumSupport;
}
inline std::array<int, 3> const& GetSupport() const
{
return mSupport;
}
private:
// Test whether point P is inside circle C using squared distance and
// squared radius.
bool Contains(int i, Circle2<ComputeType> const& circle) const
{
// NOTE: In this algorithm, circle.radius is the *squared radius*
// until the function returns at which time a square root is
// applied.
Vector2<ComputeType> diff = mComputePoints[i] - circle.center;
return Dot(diff, diff) <= circle.radius;
}
Circle2<ComputeType> ExactCircle1(int i0) const
{
Circle2<ComputeType> minimal;
minimal.center = mComputePoints[i0];
minimal.radius = (ComputeType)0;
return minimal;
}
Circle2<ComputeType> ExactCircle2(int i0, int i1) const
{
Vector2<ComputeType> const& P0 = mComputePoints[i0];
Vector2<ComputeType> const& P1 = mComputePoints[i1];
Vector2<ComputeType> diff = P1 - P0;
Circle2<ComputeType> minimal;
minimal.center = ((ComputeType)0.5)*(P0 + P1);
minimal.radius = ((ComputeType)0.25)*Dot(diff, diff);
return minimal;
}
Circle2<ComputeType> ExactCircle3(int i0, int i1, int i2) const
{
// Compute the 2D circle containing P0, P1, and P2. The center in
// barycentric coordinates is C = x0*P0 + x1*P1 + x2*P2, where
// x0 + x1 + x2 = 1. The center is equidistant from the three
// points, so |C - P0| = |C - P1| = |C - P2| = R, where R is the
// radius of the circle. From these conditions,
// C - P0 = x0*E0 + x1*E1 - E0
// C - P1 = x0*E0 + x1*E1 - E1
// C - P2 = x0*E0 + x1*E1
// where E0 = P0 - P2 and E1 = P1 - P2, which leads to
// r^2 = |x0*E0 + x1*E1|^2 - 2*Dot(E0, x0*E0 + x1*E1) + |E0|^2
// r^2 = |x0*E0 + x1*E1|^2 - 2*Dot(E1, x0*E0 + x1*E1) + |E1|^2
// r^2 = |x0*E0 + x1*E1|^2
// Subtracting the last equation from the first two and writing
// the equations as a linear system,
//
// +- -++ -+ +- -+
// | Dot(E0,E0) Dot(E0,E1) || x0 | = 0.5 | Dot(E0,E0) |
// | Dot(E1,E0) Dot(E1,E1) || x1 | | Dot(E1,E1) |
// +- -++ -+ +- -+
//
// The following code solves this system for x0 and x1 and then
// evaluates the third equation in r^2 to obtain r.
Vector2<ComputeType> const& P0 = mComputePoints[i0];
Vector2<ComputeType> const& P1 = mComputePoints[i1];
Vector2<ComputeType> const& P2 = mComputePoints[i2];
Vector2<ComputeType> E0 = P0 - P2;
Vector2<ComputeType> E1 = P1 - P2;
Matrix2x2<ComputeType> A;
A(0, 0) = Dot(E0, E0);
A(0, 1) = Dot(E0, E1);
A(1, 0) = A(0, 1);
A(1, 1) = Dot(E1, E1);
ComputeType const half = (ComputeType)0.5;
Vector2<ComputeType> B{ half * A(0, 0), half* A(1, 1) };
Circle2<ComputeType> minimal;
Vector2<ComputeType> X;
if (LinearSystem<ComputeType>::Solve(A, B, X))
{
ComputeType x2 = (ComputeType)1 - X[0] - X[1];
minimal.center = X[0] * P0 + X[1] * P1 + x2 * P2;
Vector2<ComputeType> tmp = X[0] * E0 + X[1] * E1;
minimal.radius = Dot(tmp, tmp);
}
else
{
minimal.center = Vector2<ComputeType>::Zero();
minimal.radius = (ComputeType)std::numeric_limits<InputType>::max();
}
return minimal;
}
typedef std::pair<Circle2<ComputeType>, bool> UpdateResult;
UpdateResult UpdateSupport1(int i)
{
Circle2<ComputeType> minimal = ExactCircle2(mSupport[0], i);
mNumSupport = 2;
mSupport[1] = i;
return std::make_pair(minimal, true);
}
UpdateResult UpdateSupport2(int i)
{
// Permutations of type 2, used for calling ExactCircle2(...).
int const numType2 = 2;
int const type2[numType2][2] =
{
{ 0, /*2*/ 1 },
{ 1, /*2*/ 0 }
};
// Permutations of type 3, used for calling ExactCircle3(...).
int const numType3 = 1; // {0, 1, 2}
Circle2<ComputeType> circle[numType2 + numType3];
ComputeType minRSqr = (ComputeType)std::numeric_limits<InputType>::max();
int iCircle = 0, iMinRSqr = -1;
int k0, k1;
// Permutations of type 2.
for (int j = 0; j < numType2; ++j, ++iCircle)
{
k0 = mSupport[type2[j][0]];
circle[iCircle] = ExactCircle2(k0, i);
if (circle[iCircle].radius < minRSqr)
{
k1 = mSupport[type2[j][1]];
if (Contains(k1, circle[iCircle]))
{
minRSqr = circle[iCircle].radius;
iMinRSqr = iCircle;
}
}
}
// Permutations of type 3.
k0 = mSupport[0];
k1 = mSupport[1];
circle[iCircle] = ExactCircle3(k0, k1, i);
if (circle[iCircle].radius < minRSqr)
{
minRSqr = circle[iCircle].radius;
iMinRSqr = iCircle;
}
switch (iMinRSqr)
{
case 0:
mSupport[1] = i;
break;
case 1:
mSupport[0] = i;
break;
case 2:
mNumSupport = 3;
mSupport[2] = i;
break;
case -1:
// For exact arithmetic, iMinRSqr >= 0, but for floating-point
// arithmetic, round-off errors can lead to iMinRSqr == -1.
// When this happens, use a simple bounding circle for the
// result and terminate the minimum-area algorithm.
return std::make_pair(Circle2<ComputeType>(), false);
}
return std::make_pair(circle[iMinRSqr], true);
}
UpdateResult UpdateSupport3(int i)
{
// Permutations of type 2, used for calling ExactCircle2(...).
int const numType2 = 3;
int const type2[numType2][3] =
{
{ 0, /*3*/ 1, 2 },
{ 1, /*3*/ 0, 2 },
{ 2, /*3*/ 0, 1 }
};
// Permutations of type 2, used for calling ExactCircle3(...).
int const numType3 = 3;
int const type3[numType3][3] =
{
{ 0, 1, /*3*/ 2 },
{ 0, 2, /*3*/ 1 },
{ 1, 2, /*3*/ 0 }
};
Circle2<ComputeType> circle[numType2 + numType3];
ComputeType minRSqr = (ComputeType)std::numeric_limits<InputType>::max();
int iCircle = 0, iMinRSqr = -1;
int k0, k1, k2;
// Permutations of type 2.
for (int j = 0; j < numType2; ++j, ++iCircle)
{
k0 = mSupport[type2[j][0]];
circle[iCircle] = ExactCircle2(k0, i);
if (circle[iCircle].radius < minRSqr)
{
k1 = mSupport[type2[j][1]];
k2 = mSupport[type2[j][2]];
if (Contains(k1, circle[iCircle]) && Contains(k2, circle[iCircle]))
{
minRSqr = circle[iCircle].radius;
iMinRSqr = iCircle;
}
}
}
// Permutations of type 3.
for (int j = 0; j < numType3; ++j, ++iCircle)
{
k0 = mSupport[type3[j][0]];
k1 = mSupport[type3[j][1]];
circle[iCircle] = ExactCircle3(k0, k1, i);
if (circle[iCircle].radius < minRSqr)
{
k2 = mSupport[type3[j][2]];
if (Contains(k2, circle[iCircle]))
{
minRSqr = circle[iCircle].radius;
iMinRSqr = iCircle;
}
}
}
switch (iMinRSqr)
{
case 0:
mNumSupport = 2;
mSupport[1] = i;
break;
case 1:
mNumSupport = 2;
mSupport[0] = i;
break;
case 2:
mNumSupport = 2;
mSupport[0] = mSupport[2];
mSupport[1] = i;
break;
case 3:
mSupport[2] = i;
break;
case 4:
mSupport[1] = i;
break;
case 5:
mSupport[0] = i;
break;
case -1:
// For exact arithmetic, iMinRSqr >= 0, but for floating-point
// arithmetic, round-off errors can lead to iMinRSqr == -1.
// When this happens, use a simple bounding circle for the
// result and terminate the minimum-area algorithm.
return std::make_pair(Circle2<ComputeType>(), false);
}
return std::make_pair(circle[iMinRSqr], true);
}
// Indices of points that support the current minimum area circle.
bool SupportContains(int j) const
{
for (int i = 0; i < mNumSupport; ++i)
{
if (j == mSupport[i])
{
return true;
}
}
return false;
}
int mNumSupport;
std::array<int, 3> mSupport;
// Random permutation of the unique input points to produce expected
// linear time for the algorithm.
std::default_random_engine mDRE;
std::vector<Vector2<ComputeType>> mComputePoints;
};
}