You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

528 lines
16 KiB

// David Eberly, Geometric Tools, Redmond WA 98052
// Copyright (c) 1998-2021
// Distributed under the Boost Software License, Version 1.0.
// https://www.boost.org/LICENSE_1_0.txt
// https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
// Version: 4.0.2019.08.13
#pragma once
#include <Mathematics/Logger.h>
#include <array>
// The interpolator is for uniformly spaced(x,y z)-values. The input samples
// must be stored in lexicographical order to represent f(x,y,z); that is,
// F[c + xBound*(r + yBound*s)] corresponds to f(x,y,z), where c is the index
// corresponding to x, r is the index corresponding to y, and s is the index
// corresponding to z. Exact interpolation is achieved by setting catmullRom
// to 'true', giving you the Catmull-Rom blending matrix. If a smooth
// interpolation is desired, set catmullRom to 'false' to obtain B-spline
// blending.
namespace gte
{
template <typename Real>
class IntpTricubic3
{
public:
// Construction.
IntpTricubic3(int xBound, int yBound, int zBound, Real xMin,
Real xSpacing, Real yMin, Real ySpacing, Real zMin, Real zSpacing,
Real const* F, bool catmullRom)
:
mXBound(xBound),
mYBound(yBound),
mZBound(zBound),
mQuantity(xBound * yBound * zBound),
mXMin(xMin),
mXSpacing(xSpacing),
mYMin(yMin),
mYSpacing(ySpacing),
mZMin(zMin),
mZSpacing(zSpacing),
mF(F)
{
// At least a 4x4x4 block of data points are needed to construct
// the tricubic interpolation.
LogAssert(xBound >= 4 && yBound >= 4 && zBound >= 4 && F != nullptr
&& xSpacing > (Real)0 && ySpacing > (Real)0 && zSpacing > (Real)0,
"Invalid input.");
mXMax = mXMin + mXSpacing * static_cast<Real>(mXBound - 1);
mInvXSpacing = (Real)1 / mXSpacing;
mYMax = mYMin + mYSpacing * static_cast<Real>(mYBound - 1);
mInvYSpacing = (Real)1 / mYSpacing;
mZMax = mZMin + mZSpacing * static_cast<Real>(mZBound - 1);
mInvZSpacing = (Real)1 / mZSpacing;
if (catmullRom)
{
mBlend[0][0] = (Real)0;
mBlend[0][1] = (Real)-0.5;
mBlend[0][2] = (Real)1;
mBlend[0][3] = (Real)-0.5;
mBlend[1][0] = (Real)1;
mBlend[1][1] = (Real)0;
mBlend[1][2] = (Real)-2.5;
mBlend[1][3] = (Real)1.5;
mBlend[2][0] = (Real)0;
mBlend[2][1] = (Real)0.5;
mBlend[2][2] = (Real)2;
mBlend[2][3] = (Real)-1.5;
mBlend[3][0] = (Real)0;
mBlend[3][1] = (Real)0;
mBlend[3][2] = (Real)-0.5;
mBlend[3][3] = (Real)0.5;
}
else
{
mBlend[0][0] = (Real)1 / (Real)6;
mBlend[0][1] = (Real)-3 / (Real)6;
mBlend[0][2] = (Real)3 / (Real)6;
mBlend[0][3] = (Real)-1 / (Real)6;;
mBlend[1][0] = (Real)4 / (Real)6;
mBlend[1][1] = (Real)0 / (Real)6;
mBlend[1][2] = (Real)-6 / (Real)6;
mBlend[1][3] = (Real)3 / (Real)6;
mBlend[2][0] = (Real)1 / (Real)6;
mBlend[2][1] = (Real)3 / (Real)6;
mBlend[2][2] = (Real)3 / (Real)6;
mBlend[2][3] = (Real)-3 / (Real)6;
mBlend[3][0] = (Real)0 / (Real)6;
mBlend[3][1] = (Real)0 / (Real)6;
mBlend[3][2] = (Real)0 / (Real)6;
mBlend[3][3] = (Real)1 / (Real)6;
}
}
// Member access.
inline int GetXBound() const
{
return mXBound;
}
inline int GetYBound() const
{
return mYBound;
}
inline int GetZBound() const
{
return mZBound;
}
inline int GetQuantity() const
{
return mQuantity;
}
inline Real const* GetF() const
{
return mF;
}
inline Real GetXMin() const
{
return mXMin;
}
inline Real GetXMax() const
{
return mXMax;
}
inline Real GetXSpacing() const
{
return mXSpacing;
}
inline Real GetYMin() const
{
return mYMin;
}
inline Real GetYMax() const
{
return mYMax;
}
inline Real GetYSpacing() const
{
return mYSpacing;
}
inline Real GetZMin() const
{
return mZMin;
}
inline Real GetZMax() const
{
return mZMax;
}
inline Real GetZSpacing() const
{
return mZSpacing;
}
// Evaluate the function and its derivatives. The functions clamp the
// inputs to xmin <= x <= xmax, ymin <= y <= ymax, and zmin <= z <= zmax.
// The first operator is for function evaluation. The second operator is
// for function or derivative evaluations. The xOrder argument is the
// order of the x-derivative, the yOrder argument is the order of the
// y-derivative, and the zOrder argument is the order of the z-derivative.
// All orders are zero to get the function value itself.
Real operator()(Real x, Real y, Real z) const
{
// Compute x-index and clamp to image.
Real xIndex = (x - mXMin) * mInvXSpacing;
int ix = static_cast<int>(xIndex);
if (ix < 0)
{
ix = 0;
}
else if (ix >= mXBound)
{
ix = mXBound - 1;
}
// Compute y-index and clamp to image.
Real yIndex = (y - mYMin) * mInvYSpacing;
int iy = static_cast<int>(yIndex);
if (iy < 0)
{
iy = 0;
}
else if (iy >= mYBound)
{
iy = mYBound - 1;
}
// Compute z-index and clamp to image.
Real zIndex = (z - mZMin) * mInvZSpacing;
int iz = static_cast<int>(zIndex);
if (iz < 0)
{
iz = 0;
}
else if (iz >= mZBound)
{
iz = mZBound - 1;
}
std::array<Real, 4> U;
U[0] = (Real)1;
U[1] = xIndex - ix;
U[2] = U[1] * U[1];
U[3] = U[1] * U[2];
std::array<Real, 4> V;
V[0] = (Real)1;
V[1] = yIndex - iy;
V[2] = V[1] * V[1];
V[3] = V[1] * V[2];
std::array<Real, 4> W;
W[0] = (Real)1;
W[1] = zIndex - iz;
W[2] = W[1] * W[1];
W[3] = W[1] * W[2];
// Compute P = M*U, Q = M*V, R = M*W.
std::array<Real, 4> P, Q, R;
for (int row = 0; row < 4; ++row)
{
P[row] = (Real)0;
Q[row] = (Real)0;
R[row] = (Real)0;
for (int col = 0; col < 4; ++col)
{
P[row] += mBlend[row][col] * U[col];
Q[row] += mBlend[row][col] * V[col];
R[row] += mBlend[row][col] * W[col];
}
}
// Compute the tensor product (M*U)(M*V)(M*W)*D where D is the 4x4x4
// subimage containing (x,y,z).
--ix;
--iy;
--iz;
Real result = (Real)0;
for (int slice = 0; slice < 4; ++slice)
{
int zClamp = iz + slice;
if (zClamp < 0)
{
zClamp = 0;
}
else if (zClamp > mZBound - 1)
{
zClamp = mZBound - 1;
}
for (int row = 0; row < 4; ++row)
{
int yClamp = iy + row;
if (yClamp < 0)
{
yClamp = 0;
}
else if (yClamp > mYBound - 1)
{
yClamp = mYBound - 1;
}
for (int col = 0; col < 4; ++col)
{
int xClamp = ix + col;
if (xClamp < 0)
{
xClamp = 0;
}
else if (xClamp > mXBound - 1)
{
xClamp = mXBound - 1;
}
result += P[col] * Q[row] * R[slice] *
mF[xClamp + mXBound * (yClamp + mYBound * zClamp)];
}
}
}
return result;
}
Real operator()(int xOrder, int yOrder, int zOrder, Real x, Real y, Real z) const
{
// Compute x-index and clamp to image.
Real xIndex = (x - mXMin) * mInvXSpacing;
int ix = static_cast<int>(xIndex);
if (ix < 0)
{
ix = 0;
}
else if (ix >= mXBound)
{
ix = mXBound - 1;
}
// Compute y-index and clamp to image.
Real yIndex = (y - mYMin) * mInvYSpacing;
int iy = static_cast<int>(yIndex);
if (iy < 0)
{
iy = 0;
}
else if (iy >= mYBound)
{
iy = mYBound - 1;
}
// Compute z-index and clamp to image.
Real zIndex = (z - mZMin) * mInvZSpacing;
int iz = static_cast<int>(zIndex);
if (iz < 0)
{
iz = 0;
}
else if (iz >= mZBound)
{
iz = mZBound - 1;
}
std::array<Real, 4> U;
Real dx, xMult;
switch (xOrder)
{
case 0:
dx = xIndex - ix;
U[0] = (Real)1;
U[1] = dx;
U[2] = dx * U[1];
U[3] = dx * U[2];
xMult = (Real)1;
break;
case 1:
dx = xIndex - ix;
U[0] = (Real)0;
U[1] = (Real)1;
U[2] = (Real)2 * dx;
U[3] = (Real)3 * dx * dx;
xMult = mInvXSpacing;
break;
case 2:
dx = xIndex - ix;
U[0] = (Real)0;
U[1] = (Real)0;
U[2] = (Real)2;
U[3] = (Real)6 * dx;
xMult = mInvXSpacing * mInvXSpacing;
break;
case 3:
U[0] = (Real)0;
U[1] = (Real)0;
U[2] = (Real)0;
U[3] = (Real)6;
xMult = mInvXSpacing * mInvXSpacing * mInvXSpacing;
break;
default:
return (Real)0;
}
std::array<Real, 4> V;
Real dy, yMult;
switch (yOrder)
{
case 0:
dy = yIndex - iy;
V[0] = (Real)1;
V[1] = dy;
V[2] = dy * V[1];
V[3] = dy * V[2];
yMult = (Real)1;
break;
case 1:
dy = yIndex - iy;
V[0] = (Real)0;
V[1] = (Real)1;
V[2] = (Real)2 * dy;
V[3] = (Real)3 * dy * dy;
yMult = mInvYSpacing;
break;
case 2:
dy = yIndex - iy;
V[0] = (Real)0;
V[1] = (Real)0;
V[2] = (Real)2;
V[3] = (Real)6 * dy;
yMult = mInvYSpacing * mInvYSpacing;
break;
case 3:
V[0] = (Real)0;
V[1] = (Real)0;
V[2] = (Real)0;
V[3] = (Real)6;
yMult = mInvYSpacing * mInvYSpacing * mInvYSpacing;
break;
default:
return (Real)0;
}
std::array<Real, 4> W;
Real dz, zMult;
switch (zOrder)
{
case 0:
dz = zIndex - iz;
W[0] = (Real)1;
W[1] = dz;
W[2] = dz * W[1];
W[3] = dz * W[2];
zMult = (Real)1;
break;
case 1:
dz = zIndex - iz;
W[0] = (Real)0;
W[1] = (Real)1;
W[2] = (Real)2 * dz;
W[3] = (Real)3 * dz * dz;
zMult = mInvZSpacing;
break;
case 2:
dz = zIndex - iz;
W[0] = (Real)0;
W[1] = (Real)0;
W[2] = (Real)2;
W[3] = (Real)6 * dz;
zMult = mInvZSpacing * mInvZSpacing;
break;
case 3:
W[0] = (Real)0;
W[1] = (Real)0;
W[2] = (Real)0;
W[3] = (Real)6;
zMult = mInvZSpacing * mInvZSpacing * mInvZSpacing;
break;
default:
return (Real)0;
}
// Compute P = M*U, Q = M*V, and R = M*W.
std::array<Real, 4> P, Q, R;
for (int row = 0; row < 4; ++row)
{
P[row] = (Real)0;
Q[row] = (Real)0;
R[row] = (Real)0;
for (int col = 0; col < 4; ++col)
{
P[row] += mBlend[row][col] * U[col];
Q[row] += mBlend[row][col] * V[col];
R[row] += mBlend[row][col] * W[col];
}
}
// Compute the tensor product (M*U)(M*V)(M*W)*D where D is the 4x4x4
// subimage containing (x,y,z).
--ix;
--iy;
--iz;
Real result = (Real)0;
for (int slice = 0; slice < 4; ++slice)
{
int zClamp = iz + slice;
if (zClamp < 0)
{
zClamp = 0;
}
else if (zClamp > mZBound - 1)
{
zClamp = mZBound - 1;
}
for (int row = 0; row < 4; ++row)
{
int yClamp = iy + row;
if (yClamp < 0)
{
yClamp = 0;
}
else if (yClamp > mYBound - 1)
{
yClamp = mYBound - 1;
}
for (int col = 0; col < 4; ++col)
{
int xClamp = ix + col;
if (xClamp < 0)
{
xClamp = 0;
}
else if (xClamp > mXBound - 1)
{
xClamp = mXBound - 1;
}
result += P[col] * Q[row] * R[slice] *
mF[xClamp + mXBound * (yClamp + mYBound * zClamp)];
}
}
}
result *= xMult * yMult * zMult;
return result;
}
private:
int mXBound, mYBound, mZBound, mQuantity;
Real mXMin, mXMax, mXSpacing, mInvXSpacing;
Real mYMin, mYMax, mYSpacing, mInvYSpacing;
Real mZMin, mZMax, mZSpacing, mInvZSpacing;
Real const* mF;
std::array<std::array<Real, 4>, 4> mBlend;
};
}