You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

296 lines
8.3 KiB

// David Eberly, Geometric Tools, Redmond WA 98052
// Copyright (c) 1998-2021
// Distributed under the Boost Software License, Version 1.0.
// https://www.boost.org/LICENSE_1_0.txt
// https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
// Version: 4.0.2019.08.13
#pragma once
#include <Mathematics/Logger.h>
#include <array>
// The interpolator is for uniformly spaced (x,y)-values. The input samples
// F must be stored in row-major order to represent f(x,y); that is,
// F[c + xBound*r] corresponds to f(x,y), where c is the index corresponding
// to x and r is the index corresponding to y.
namespace gte
{
template <typename Real>
class IntpBilinear2
{
public:
// Construction.
IntpBilinear2(int xBound, int yBound, Real xMin, Real xSpacing,
Real yMin, Real ySpacing, Real const* F)
:
mXBound(xBound),
mYBound(yBound),
mQuantity(xBound* yBound),
mXMin(xMin),
mXSpacing(xSpacing),
mYMin(yMin),
mYSpacing(ySpacing),
mF(F)
{
// At least a 3x3 block of data points are needed to construct the
// estimates of the boundary derivatives.
LogAssert(mXBound >= 2 && mYBound >= 2 && mF != nullptr, "Invalid input.");
LogAssert(mXSpacing > (Real)0 && mYSpacing > (Real)0, "Invalid input.");
mXMax = mXMin + mXSpacing * static_cast<Real>(mXBound - 1);
mInvXSpacing = (Real)1 / mXSpacing;
mYMax = mYMin + mYSpacing * static_cast<Real>(mYBound - 1);
mInvYSpacing = (Real)1 / mYSpacing;
mBlend[0][0] = (Real)1;
mBlend[0][1] = (Real)-1;
mBlend[1][0] = (Real)0;
mBlend[1][1] = (Real)1;
}
// Member access.
inline int GetXBound() const
{
return mXBound;
}
inline int GetYBound() const
{
return mYBound;
}
inline int GetQuantity() const
{
return mQuantity;
}
inline Real const* GetF() const
{
return mF;
}
inline Real GetXMin() const
{
return mXMin;
}
inline Real GetXMax() const
{
return mXMax;
}
inline Real GetXSpacing() const
{
return mXSpacing;
}
inline Real GetYMin() const
{
return mYMin;
}
inline Real GetYMax() const
{
return mYMax;
}
inline Real GetYSpacing() const
{
return mYSpacing;
}
// Evaluate the function and its derivatives. The functions clamp the
// inputs to xmin <= x <= xmax and ymin <= y <= ymax. The first
// operator is for function evaluation. The second operator is for
// function or derivative evaluations. The xOrder argument is the
// order of the x-derivative and the yOrder argument is the order of
// the y-derivative. Both orders are zero to get the function value
// itself.
Real operator()(Real x, Real y) const
{
// Compute x-index and clamp to image.
Real xIndex = (x - mXMin) * mInvXSpacing;
int ix = static_cast<int>(xIndex);
if (ix < 0)
{
ix = 0;
}
else if (ix >= mXBound)
{
ix = mXBound - 1;
}
// Compute y-index and clamp to image.
Real yIndex = (y - mYMin) * mInvYSpacing;
int iy = static_cast<int>(yIndex);
if (iy < 0)
{
iy = 0;
}
else if (iy >= mYBound)
{
iy = mYBound - 1;
}
std::array<Real, 2> U;
U[0] = (Real)1;
U[1] = xIndex - ix;
std::array<Real, 2> V;
V[0] = (Real)1;
V[1] = yIndex - iy;
// Compute P = M*U and Q = M*V.
std::array<Real, 2> P, Q;
for (int row = 0; row < 2; ++row)
{
P[row] = (Real)0;
Q[row] = (Real)0;
for (int col = 0; col < 2; ++col)
{
P[row] += mBlend[row][col] * U[col];
Q[row] += mBlend[row][col] * V[col];
}
}
// Compute (M*U)^t D (M*V) where D is the 2x2 subimage
// containing (x,y).
Real result = (Real)0;
for (int row = 0; row < 2; ++row)
{
int yClamp = iy + row;
if (yClamp >= mYBound)
{
yClamp = mYBound - 1;
}
for (int col = 0; col < 2; ++col)
{
int xClamp = ix + col;
if (xClamp >= mXBound)
{
xClamp = mXBound - 1;
}
result += P[col] * Q[row] * mF[xClamp + mXBound * yClamp];
}
}
return result;
}
Real operator()(int xOrder, int yOrder, Real x, Real y) const
{
// Compute x-index and clamp to image.
Real xIndex = (x - mXMin) * mInvXSpacing;
int ix = static_cast<int>(xIndex);
if (ix < 0)
{
ix = 0;
}
else if (ix >= mXBound)
{
ix = mXBound - 1;
}
// Compute y-index and clamp to image.
Real yIndex = (y - mYMin) * mInvYSpacing;
int iy = static_cast<int>(yIndex);
if (iy < 0)
{
iy = 0;
}
else if (iy >= mYBound)
{
iy = mYBound - 1;
}
std::array<Real, 2> U;
Real dx, xMult;
switch (xOrder)
{
case 0:
dx = xIndex - ix;
U[0] = (Real)1;
U[1] = dx;
xMult = (Real)1;
break;
case 1:
dx = xIndex - ix;
U[0] = (Real)0;
U[1] = (Real)1;
xMult = mInvXSpacing;
break;
default:
return (Real)0;
}
std::array<Real, 2> V;
Real dy, yMult;
switch (yOrder)
{
case 0:
dy = yIndex - iy;
V[0] = (Real)1;
V[1] = dy;
yMult = (Real)1;
break;
case 1:
dy = yIndex - iy;
V[0] = (Real)0;
V[1] = (Real)1;
yMult = mInvYSpacing;
break;
default:
return (Real)0;
}
// Compute P = M*U and Q = M*V.
std::array<Real, 2> P, Q;
for (int row = 0; row < 2; ++row)
{
P[row] = (Real)0;
Q[row] = (Real)0;
for (int col = 0; col < 2; ++col)
{
P[row] += mBlend[row][col] * U[col];
Q[row] += mBlend[row][col] * V[col];
}
}
// Compute (M*U)^t D (M*V) where D is the 2x2 subimage containing (x,y).
Real result = (Real)0;
for (int row = 0; row < 2; ++row)
{
int yClamp = iy + row;
if (yClamp >= mYBound)
{
yClamp = mYBound - 1;
}
for (int col = 0; col < 2; ++col)
{
int xClamp = ix + col;
if (xClamp >= mXBound)
{
xClamp = mXBound - 1;
}
result += P[col] * Q[row] * mF[xClamp + mXBound * yClamp];
}
}
result *= xMult * yMult;
return result;
}
private:
int mXBound, mYBound, mQuantity;
Real mXMin, mXMax, mXSpacing, mInvXSpacing;
Real mYMin, mYMax, mYSpacing, mInvYSpacing;
Real const* mF;
std::array<std::array<Real, 2>, 2> mBlend;
};
}