You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

217 lines
8.1 KiB

// David Eberly, Geometric Tools, Redmond WA 98052
// Copyright (c) 1998-2021
// Distributed under the Boost Software License, Version 1.0.
// https://www.boost.org/LICENSE_1_0.txt
// https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
// Version: 4.0.2019.08.13
#pragma once
#include <Mathematics/RootsPolynomial.h>
#include <array>
#include <functional>
namespace gte
{
template <typename Real>
class Integration
{
public:
// A simple algorithm, but slow to converge as the number of samples
// is increased. The 'numSamples' needs to be two or larger.
static Real TrapezoidRule(int numSamples, Real a, Real b,
std::function<Real(Real)> const& integrand)
{
Real h = (b - a) / (Real)(numSamples - 1);
Real result = (Real)0.5 * (integrand(a) + integrand(b));
for (int i = 1; i <= numSamples - 2; ++i)
{
result += integrand(a + i * h);
}
result *= h;
return result;
}
// The trapezoid rule is used to generate initial estimates, but then
// Richardson extrapolation is used to improve the estimates. This is
// preferred over TrapezoidRule. The 'order' must be positive.
static Real Romberg(int order, Real a, Real b,
std::function<Real(Real)> const& integrand)
{
Real const half = (Real)0.5;
std::vector<std::array<Real, 2>> rom(order);
Real h = b - a;
rom[0][0] = half * h * (integrand(a) + integrand(b));
for (int i0 = 2, p0 = 1; i0 <= order; ++i0, p0 *= 2, h *= half)
{
// Approximations via the trapezoid rule.
Real sum = (Real)0;
int i1;
for (i1 = 1; i1 <= p0; ++i1)
{
sum += integrand(a + h * (i1 - half));
}
// Richardson extrapolation.
rom[0][1] = half * (rom[0][0] + h * sum);
for (int i2 = 1, p2 = 4; i2 < i0; ++i2, p2 *= 4)
{
rom[i2][1] = (p2 * rom[i2 - 1][1] - rom[i2 - 1][0]) / (p2 - 1);
}
for (i1 = 0; i1 < i0; ++i1)
{
rom[i1][0] = rom[i1][1];
}
}
Real result = rom[order - 1][0];
return result;
}
// Gaussian quadrature estimates the integral of a function f(x)
// defined on [-1,1] using
// integral_{-1}^{1} f(t) dt = sum_{i=0}^{n-1} c[i]*f(r[i])
// where r[i] are the roots to the Legendre polynomial p(t) of degree
// n and
// c[i] = integral_{-1}^{1} prod_{j=0,j!=i} (t-r[j]/(r[i]-r[j]) dt
// To integrate over [a,b], a transformation to [-1,1] is applied
// internally: x - ((b-a)*t + (b+a))/2. The Legendre polynomials are
// generated by
// P[0](x) = 1, P[1](x) = x,
// P[k](x) = ((2*k-1)*x*P[k-1](x) - (k-1)*P[k-2](x))/k, k >= 2
// Implementing the polynomial generation is simple, and computing the
// roots requires a numerical method for finding polynomial roots.
// The challenging task is to develop an efficient algorithm for
// computing the coefficients c[i] for a specified degree. The
// 'degree' must be two or larger.
static void ComputeQuadratureInfo(int degree, std::vector<Real>& roots,
std::vector<Real>& coefficients)
{
Real const zero = (Real)0;
Real const one = (Real)1;
Real const half = (Real)0.5;
std::vector<std::vector<Real>> poly(degree + 1);
poly[0].resize(1);
poly[0][0] = one;
poly[1].resize(2);
poly[1][0] = zero;
poly[1][1] = one;
for (int n = 2; n <= degree; ++n)
{
Real mult0 = (Real)(n - 1) / (Real)n;
Real mult1 = (Real)(2 * n - 1) / (Real)n;
poly[n].resize(n + 1);
poly[n][0] = -mult0 * poly[n - 2][0];
for (int i = 1; i <= n - 2; ++i)
{
poly[n][i] = mult1 * poly[n - 1][i - 1] - mult0 * poly[n - 2][i];
}
poly[n][n - 1] = mult1 * poly[n - 1][n - 2];
poly[n][n] = mult1 * poly[n - 1][n - 1];
}
roots.resize(degree);
RootsPolynomial<Real>::Find(degree, &poly[degree][0], 2048, &roots[0]);
coefficients.resize(roots.size());
size_t n = roots.size() - 1;
std::vector<Real> subroots(n);
for (size_t i = 0; i < roots.size(); ++i)
{
Real denominator = (Real)1;
for (size_t j = 0, k = 0; j < roots.size(); ++j)
{
if (j != i)
{
subroots[k++] = roots[j];
denominator *= roots[i] - roots[j];
}
}
std::array<Real, 2> delta =
{
-one - subroots.back(),
+one - subroots.back()
};
std::vector<std::array<Real, 2>> weights(n);
weights[0][0] = half * delta[0] * delta[0];
weights[0][1] = half * delta[1] * delta[1];
for (size_t k = 1; k < n; ++k)
{
Real dk = (Real)k;
Real mult = -dk / (dk + (Real)2);
weights[k][0] = mult * delta[0] * weights[k - 1][0];
weights[k][1] = mult * delta[1] * weights[k - 1][1];
}
struct Info
{
int numBits;
std::array<Real, 2> product;
};
int numElements = (1 << static_cast<unsigned int>(n - 1));
std::vector<Info> info(numElements);
info[0].numBits = 0;
info[0].product[0] = one;
info[0].product[1] = one;
for (int ipow = 1, r = 0; ipow < numElements; ipow <<= 1, ++r)
{
info[ipow].numBits = 1;
info[ipow].product[0] = -one - subroots[r];
info[ipow].product[1] = +one - subroots[r];
for (int m = 1, j = ipow + 1; m < ipow; ++m, ++j)
{
info[j].numBits = info[m].numBits + 1;
info[j].product[0] =
info[ipow].product[0] * info[m].product[0];
info[j].product[1] =
info[ipow].product[1] * info[m].product[1];
}
}
std::vector<std::array<Real, 2>> sum(n);
std::array<Real, 2> zero2 = { zero, zero };
std::fill(sum.begin(), sum.end(), zero2);
for (size_t k = 0; k < info.size(); ++k)
{
sum[info[k].numBits][0] += info[k].product[0];
sum[info[k].numBits][1] += info[k].product[1];
}
std::array<Real, 2> total = zero2;
for (size_t k = 0; k < n; ++k)
{
total[0] += weights[n - 1 - k][0] * sum[k][0];
total[1] += weights[n - 1 - k][1] * sum[k][1];
}
coefficients[i] = (total[1] - total[0]) / denominator;
}
}
static Real GaussianQuadrature(std::vector<Real> const& roots,
std::vector<Real>const& coefficients, Real a, Real b,
std::function<Real(Real)> const& integrand)
{
Real const half = (Real)0.5;
Real radius = half * (b - a);
Real center = half * (b + a);
Real result = (Real)0;
for (size_t i = 0; i < roots.size(); ++i)
{
result += coefficients[i] * integrand(radius * roots[i] + center);
}
result *= radius;
return result;
}
};
}