You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

512 lines
16 KiB

// David Eberly, Geometric Tools, Redmond WA 98052
// Copyright (c) 1998-2021
// Distributed under the Boost Software License, Version 1.0.
// https://www.boost.org/LICENSE_1_0.txt
// https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
// Version: 4.0.2019.08.13
#pragma once
#include <Mathematics/Logger.h>
#include <Mathematics/Image.h>
#include <array>
#include <string>
//#define GTE_THROW_ON_IMAGE2_ERRORS
namespace gte
{
template <typename PixelType>
class Image2 : public Image<PixelType>
{
public:
// Construction and destruction. The last constructor must have
// positive dimensions; otherwise, the image is empty.
virtual ~Image2()
{
}
Image2()
{
}
Image2(int dimension0, int dimension1)
:
Image<PixelType>(std::vector<int>{ dimension0, dimension1 })
{
}
// Support for copy semantics.
Image2(Image2 const& image)
:
Image<PixelType>(image)
{
}
Image2& operator=(Image2 const& image)
{
Image<PixelType>::operator=(image);
return *this;
}
// Support for move semantics.
Image2(Image2&& image)
{
*this = std::move(image);
}
Image2& operator= (Image2&& image)
{
Image<PixelType>::operator=(image);
return *this;
}
// Support for changing the image dimensions. All pixel data is lost
// by this operation.
void Reconstruct(int dimension0, int dimension1)
{
Image<PixelType>::Reconstruct(std::vector<int>{ dimension0, dimension1 });
}
// Conversion between 1-dimensional indices and 2-dimensional
// coordinates.
inline size_t GetIndex(int x, int y) const
{
#if defined(GTE_THROW_ON_IMAGE2_ERRORS)
if (0 <= x && x < this->mDimensions[0]
&& 0 <= y && y < this->mDimensions[1])
{
return static_cast<size_t>(x) +
static_cast<size_t>(this->mDimensions[0]) * static_cast<size_t>(y);
}
else
{
LogError(
"Invalid coordinates (" + std::to_string(x) + "," +
std::to_string(y) + ").");
}
#else
return static_cast<size_t>(x) +
static_cast<size_t>(this->mDimensions[0]) * static_cast<size_t>(y);
#endif
}
inline size_t GetIndex(std::array<int, 2> const& coord) const
{
#if defined(GTE_THROW_ON_IMAGE2_ERRORS)
if (0 <= coord[0] && coord[0] < this->mDimensions[0]
&& 0 <= coord[1] && coord[1] < this->mDimensions[1])
{
return static_cast<size_t>(coord[0]) +
static_cast<size_t>(this->mDimensions[0]) * static_cast<size_t>(coord[1]);
}
else
{
LogError(
"Invalid coordinates (" + std::to_string(coord[0]) + "," +
std::to_string(coord[1]) + ").");
}
#else
return static_cast<size_t>(coord[0]) +
static_cast<size_t>(this->mDimensions[0]) * static_cast<size_t>(coord[1]);
#endif
}
inline void GetCoordinates(size_t index, int& x, int& y) const
{
#if defined(GTE_THROW_ON_IMAGE2_ERRORS)
if (index < this->mPixels.size())
{
x = static_cast<int>(index % this->mDimensions[0]);
y = static_cast<int>(index / this->mDimensions[0]);
}
else
{
LogError(
"Invalid index " + std::to_string(index) + ".");
}
#else
x = static_cast<int>(index % this->mDimensions[0]);
y = static_cast<int>(index / this->mDimensions[0]);
#endif
}
inline std::array<int, 2> GetCoordinates(size_t index) const
{
std::array<int, 2> coord;
#if defined(GTE_THROW_ON_IMAGE2_ERRORS)
if (index < this->mPixels.size())
{
coord[0] = static_cast<int>(index % this->mDimensions[0]);
coord[1] = static_cast<int>(index / this->mDimensions[0]);
return coord;
}
else
{
LogError(
"Invalid index " + std::to_string(index) + ".");
}
#else
coord[0] = static_cast<int>(index % this->mDimensions[0]);
coord[1] = static_cast<int>(index / this->mDimensions[0]);
return coord;
#endif
}
// Access the data as a 2-dimensional array. The operator() functions
// test for valid (x,y) when iterator checking is enabled and throw
// on invalid (x,y). The Get() functions test for valid (x,y) and
// clamp when invalid; these functions cannot fail.
inline PixelType& operator() (int x, int y)
{
#if defined(GTE_THROW_ON_IMAGE2_ERRORS)
if (0 <= x && x < this->mDimensions[0]
&& 0 <= y && y < this->mDimensions[1])
{
return this->mPixels[x + this->mDimensions[0] * y];
}
else
{
LogError(
"Invalid coordinates (" + std::to_string(x) + "," +
std::to_string(y) + ").");
}
#else
return this->mPixels[x + this->mDimensions[0] * y];
#endif
}
inline PixelType const& operator() (int x, int y) const
{
#if defined(GTE_THROW_ON_IMAGE2_ERRORS)
if (0 <= x && x < this->mDimensions[0]
&& 0 <= y && y < this->mDimensions[1])
{
return this->mPixels[x + this->mDimensions[0] * y];
}
else
{
LogError(
"Invalid coordinates (" + std::to_string(x) + "," +
std::to_string(y) + ").");
}
#else
return this->mPixels[x + this->mDimensions[0] * y];
#endif
}
inline PixelType& operator() (std::array<int, 2> const& coord)
{
#if defined(GTE_THROW_ON_IMAGE2_ERRORS)
if (0 <= coord[0] && coord[0] < this->mDimensions[0]
&& 0 <= coord[1] && coord[1] < this->mDimensions[1])
{
return this->mPixels[coord[0] + this->mDimensions[0] * coord[1]];
}
else
{
LogError(
"Invalid coordinates (" + std::to_string(coord[0]) + "," +
std::to_string(coord[1]) + ").");
}
#else
return this->mPixels[coord[0] + this->mDimensions[0] * coord[1]];
#endif
}
inline PixelType const& operator() (std::array<int, 2> const& coord) const
{
#if defined(GTE_THROW_ON_IMAGE2_ERRORS)
if (0 <= coord[0] && coord[0] < this->mDimensions[0]
&& 0 <= coord[1] && coord[1] < this->mDimensions[1])
{
return this->mPixels[coord[0] + this->mDimensions[0] * coord[1]];
}
else
{
LogError(
"Invalid coordinates (" + std::to_string(coord[0]) + "," +
std::to_string(coord[1]) + ").");
}
#else
return this->mPixels[coord[0] + this->mDimensions[0] * coord[1]];
#endif
}
inline PixelType& Get(int x, int y)
{
// Clamp to valid (x,y).
if (x < 0)
{
x = 0;
}
else if (x >= this->mDimensions[0])
{
x = this->mDimensions[0] - 1;
}
if (y < 0)
{
y = 0;
}
else if (y >= this->mDimensions[1])
{
y = this->mDimensions[1] - 1;
}
return this->mPixels[x + this->mDimensions[0] * y];
}
inline PixelType const& Get(int x, int y) const
{
// Clamp to valid (x,y).
if (x < 0)
{
x = 0;
}
else if (x >= this->mDimensions[0])
{
x = this->mDimensions[0] - 1;
}
if (y < 0)
{
y = 0;
}
else if (y >= this->mDimensions[1])
{
y = this->mDimensions[1] - 1;
}
return this->mPixels[x + this->mDimensions[0] * y];
}
inline PixelType& Get(std::array<int, 2> coord)
{
// Clamp to valid (x,y).
for (int i = 0; i < 2; ++i)
{
if (coord[i] < 0)
{
coord[i] = 0;
}
else if (coord[i] >= this->mDimensions[i])
{
coord[i] = this->mDimensions[i] - 1;
}
}
return this->mPixels[coord[0] + this->mDimensions[0] * coord[1]];
}
inline PixelType const& Get(std::array<int, 2> coord) const
{
// Clamp to valid (x,y).
for (int i = 0; i < 2; ++i)
{
if (coord[i] < 0)
{
coord[i] = 0;
}
else if (coord[i] >= this->mDimensions[i])
{
coord[i] = this->mDimensions[i] - 1;
}
}
return this->mPixels[coord[0] + this->mDimensions[0] * coord[1]];
}
// In the following discussion, u and v are in {-1,1}. Given a pixel
// (x,y), the 4-connected neighbors have relative offsets (u,0) and
// (0,v). The 8-connected neighbors include the 4-connected neighbors
// and have additional relative offsets (u,v). The corner neighbors
// have relative offsets (0,0), (1,0), (0,1), and (1,1) in that order.
// The full neighborhood is the set of 3x3 pixels centered at (x,y).
// The neighborhoods can be accessed as 1-dimensional indices using
// these functions. The first four functions provide 1-dimensional
// indices relative to any pixel location; these depend only on the
// image dimensions. The last four functions provide 1-dimensional
// indices for the actual pixels in the neighborhood; no clamping is
// used when (x,y) is on the boundary.
void GetNeighborhood(std::array<int, 4>& nbr) const
{
int dim0 = this->mDimensions[0];
nbr[0] = -1; // (x-1,y)
nbr[1] = +1; // (x+1,y)
nbr[2] = -dim0; // (x,y-1)
nbr[3] = +dim0; // (x,y+1)
}
void GetNeighborhood(std::array<int, 8>& nbr) const
{
int dim0 = this->mDimensions[0];
nbr[0] = -1; // (x-1,y)
nbr[1] = +1; // (x+1,y)
nbr[2] = -dim0; // (x,y-1)
nbr[3] = +dim0; // (x,y+1)
nbr[4] = -1 - dim0; // (x-1,y-1)
nbr[5] = +1 - dim0; // (x+1,y-1)
nbr[6] = -1 + dim0; // (x-1,y+1)
nbr[7] = +1 + dim0; // (x+1,y+1)
}
void GetCorners(std::array<int, 4>& nbr) const
{
int dim0 = this->mDimensions[0];
nbr[0] = 0; // (x,y)
nbr[1] = 1; // (x+1,y)
nbr[2] = dim0; // (x,y+1)
nbr[3] = dim0 + 1; // (x+1,y+1)
}
void GetFull(std::array<int, 9>& nbr) const
{
int dim0 = this->mDimensions[0];
nbr[0] = -1 - dim0; // (x-1,y-1)
nbr[1] = -dim0; // (x,y-1)
nbr[2] = +1 - dim0; // (x+1,y-1)
nbr[3] = -1; // (x-1,y)
nbr[4] = 0; // (x,y)
nbr[5] = +1; // (x+1,y)
nbr[6] = -1 + dim0; // (x-1,y+1)
nbr[7] = +dim0; // (x,y+1)
nbr[8] = +1 + dim0; // (x+1,y+1)
}
void GetNeighborhood(int x, int y, std::array<size_t, 4>& nbr) const
{
size_t index = GetIndex(x, y);
std::array<int, 4> inbr;
GetNeighborhood(inbr);
for (int i = 0; i < 4; ++i)
{
nbr[i] = index + inbr[i];
}
}
void GetNeighborhood(int x, int y, std::array<size_t, 8>& nbr) const
{
size_t index = GetIndex(x, y);
std::array<int, 8> inbr;
GetNeighborhood(inbr);
for (int i = 0; i < 8; ++i)
{
nbr[i] = index + inbr[i];
}
}
void GetCorners(int x, int y, std::array<size_t, 4>& nbr) const
{
size_t index = GetIndex(x, y);
std::array<int, 4> inbr;
GetCorners(inbr);
for (int i = 0; i < 4; ++i)
{
nbr[i] = index + inbr[i];
}
}
void GetFull(int x, int y, std::array<size_t, 9>& nbr) const
{
size_t index = GetIndex(x, y);
std::array<int, 9> inbr;
GetFull(inbr);
for (int i = 0; i < 9; ++i)
{
nbr[i] = index + inbr[i];
}
}
// The neighborhoods can be accessed as 2-tuples using these
// functions. The first four functions provide 2-tuples relative to
// any pixel location; these depend only on the image dimensions. The
// last four functions provide 2-tuples for the actual pixels in the
// neighborhood; no clamping is used when (x,y) is on the boundary.
void GetNeighborhood(std::array<std::array<int, 2>, 4>& nbr) const
{
nbr[0] = { { -1, 0 } };
nbr[1] = { { +1, 0 } };
nbr[2] = { { 0, -1 } };
nbr[3] = { { 0, +1 } };
}
void GetNeighborhood(std::array<std::array<int, 2>, 8>& nbr) const
{
nbr[0] = { { -1, -1 } };
nbr[1] = { { 0, -1 } };
nbr[2] = { { +1, -1 } };
nbr[3] = { { -1, 0 } };
nbr[4] = { { +1, 0 } };
nbr[5] = { { -1, +1 } };
nbr[6] = { { 0, +1 } };
nbr[7] = { { +1, +1 } };
}
void GetCorners(std::array<std::array<int, 2>, 4>& nbr) const
{
nbr[0] = { { 0, 0 } };
nbr[1] = { { 1, 0 } };
nbr[2] = { { 0, 1 } };
nbr[3] = { { 1, 1 } };
}
void GetFull(std::array<std::array<int, 2>, 9>& nbr) const
{
nbr[0] = { { -1, -1 } };
nbr[1] = { { 0, -1 } };
nbr[2] = { { +1, -1 } };
nbr[3] = { { -1, 0 } };
nbr[4] = { { 0, 0 } };
nbr[5] = { { +1, 0 } };
nbr[6] = { { -1, +1 } };
nbr[7] = { { 0, +1 } };
nbr[8] = { { +1, +1 } };
}
void GetNeighborhood(int x, int y, std::array<std::array<size_t, 2>, 4>& nbr) const
{
std::array<std::array<int, 2>, 4> inbr;
GetNeighborhood(inbr);
for (int i = 0; i < 4; ++i)
{
nbr[i][0] = static_cast<size_t>(x) + inbr[i][0];
nbr[i][1] = static_cast<size_t>(y) + inbr[i][1];
}
}
void GetNeighborhood(int x, int y, std::array<std::array<size_t, 2>, 8>& nbr) const
{
std::array<std::array<int, 2>, 8> inbr;
GetNeighborhood(inbr);
for (int i = 0; i < 8; ++i)
{
nbr[i][0] = static_cast<size_t>(x) + inbr[i][0];
nbr[i][1] = static_cast<size_t>(y) + inbr[i][1];
}
}
void GetCorners(int x, int y, std::array<std::array<size_t, 2>, 4>& nbr) const
{
std::array<std::array<int, 2>, 4> inbr;
GetCorners(inbr);
for (int i = 0; i < 4; ++i)
{
nbr[i][0] = static_cast<size_t>(x) + inbr[i][0];
nbr[i][1] = static_cast<size_t>(y) + inbr[i][1];
}
}
void GetFull(int x, int y, std::array<std::array<size_t, 2>, 9>& nbr) const
{
std::array<std::array<int, 2>, 9> inbr;
GetFull(inbr);
for (int i = 0; i < 9; ++i)
{
nbr[i][0] = static_cast<size_t>(x) + inbr[i][0];
nbr[i][1] = static_cast<size_t>(y) + inbr[i][1];
}
}
};
}