You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

321 lines
10 KiB

// David Eberly, Geometric Tools, Redmond WA 98052
// Copyright (c) 1998-2021
// Distributed under the Boost Software License, Version 1.0.
// https://www.boost.org/LICENSE_1_0.txt
// https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
// Version: 4.0.2019.08.13
#pragma once
#include <Mathematics/Matrix.h>
#include <Mathematics/SymmetricEigensolver.h>
// A hyperellipsoid has center K; axis directions U[0] through U[N-1], all
// unit-length vectors; and extents e[0] through e[N-1], all positive numbers.
// A point X = K + sum_{d=0}^{N-1} y[d]*U[d] is on the hyperellipsoid whenever
// sum_{d=0}^{N-1} (y[d]/e[d])^2 = 1. An algebraic representation for the
// hyperellipsoid is (X-K)^T * M * (X-K) = 1, where M is the NxN symmetric
// matrix M = sum_{d=0}^{N-1} U[d]*U[d]^T/e[d]^2, where the superscript T
// denotes transpose. Observe that U[i]*U[i]^T is a matrix, not a scalar dot
// product. The hyperellipsoid is also represented by a quadratic equation
// 0 = C + B^T*X + X^T*A*X, where C is a scalar, B is an Nx1 vector, and A is
// an NxN symmetric matrix with positive eigenvalues. The coefficients can be
// stored from lowest degree to highest degree,
// C = k[0]
// B = k[1], ..., k[N]
// A = k[N+1], ..., k[(N+1)(N+2)/2 - 1]
// where the A-coefficients are the upper-triangular elements of A listed in
// row-major order. For N = 2, X = (x[0],x[1]) and
// 0 = k[0] +
// k[1]*x[0] + k[2]*x[1] +
// k[3]*x[0]*x[0] + k[4]*x[0]*x[1]
// + k[5]*x[1]*x[1]
// For N = 3, X = (x[0],x[1],x[2]) and
// 0 = k[0] +
// k[1]*x[0] + k[2]*x[1] + k[3]*x[2] +
// k[4]*x[0]*x[0] + k[5]*x[0]*x[1] + k[6]*x[0]*x[2] +
// + k[7]*x[1]*x[1] + k[8]*x[1]*x[2] +
// + k[9]*x[2]*x[2]
// This equation can be factored to the form (X-K)^T * M * (X-K) = 1, where
// K = -A^{-1}*B/2, M = A/(B^T*A^{-1}*B/4-C).
namespace gte
{
template <int N, typename Real>
class Hyperellipsoid
{
public:
// Construction and destruction. The default constructor sets the
// center to Vector<N,Real>::Zero(), the axes to
// Vector<N,Real>::Unit(d), and all extents to 1.
Hyperellipsoid()
{
center.MakeZero();
for (int d = 0; d < N; ++d)
{
axis[d].MakeUnit(d);
extent[d] = (Real)1;
}
}
Hyperellipsoid(Vector<N, Real> const& inCenter,
std::array<Vector<N, Real>, N> const inAxis,
Vector<N, Real> const& inExtent)
:
center(inCenter),
axis(inAxis),
extent(inExtent)
{
}
// Compute M = sum_{d=0}^{N-1} U[d]*U[d]^T/e[d]^2.
void GetM(Matrix<N, N, Real>& M) const
{
M.MakeZero();
for (int d = 0; d < N; ++d)
{
Vector<N, Real> ratio = axis[d] / extent[d];
M += OuterProduct<N, N, Real>(ratio, ratio);
}
}
// Compute M^{-1} = sum_{d=0}^{N-1} U[d]*U[d]^T*e[d]^2.
void GetMInverse(Matrix<N, N, Real>& MInverse) const
{
MInverse.MakeZero();
for (int d = 0; d < N; ++d)
{
Vector<N, Real> product = axis[d] * extent[d];
MInverse += OuterProduct<N, N, Real>(product, product);
}
}
// Construct the coefficients in the quadratic equation that represents
// the hyperellipsoid.
void ToCoefficients(std::array<Real, (N + 1) * (N + 2) / 2> & coeff) const
{
int const numCoefficients = (N + 1) * (N + 2) / 2;
Matrix<N, N, Real> A;
Vector<N, Real> B;
Real C;
ToCoefficients(A, B, C);
Convert(A, B, C, coeff);
// Arrange for one of the coefficients of the quadratic terms
// to be 1.
int quadIndex = numCoefficients - 1;
int maxIndex = quadIndex;
Real maxValue = std::fabs(coeff[quadIndex]);
for (int d = 2; d < N; ++d)
{
quadIndex -= d;
Real absValue = std::fabs(coeff[quadIndex]);
if (absValue > maxValue)
{
maxIndex = quadIndex;
maxValue = absValue;
}
}
Real invMaxValue = (Real)1 / maxValue;
for (int i = 0; i < numCoefficients; ++i)
{
if (i != maxIndex)
{
coeff[i] *= invMaxValue;
}
else
{
coeff[i] = (Real)1;
}
}
}
void ToCoefficients(Matrix<N, N, Real>& A, Vector<N, Real>& B, Real& C) const
{
GetM(A);
Vector<N, Real> product = A * center;
B = (Real)-2 * product;
C = Dot(center, product) - (Real)1;
}
// Construct C, U[i], and e[i] from the equation. The return value is
// 'true' if and only if the input coefficients represent a
// hyperellipsoid. If the function returns 'false', the hyperellipsoid
// data members are undefined.
bool FromCoefficients(std::array<Real, (N + 1) * (N + 2) / 2> const& coeff)
{
Matrix<N, N, Real> A;
Vector<N, Real> B;
Real C;
Convert(coeff, A, B, C);
return FromCoefficients(A, B, C);
}
bool FromCoefficients(Matrix<N, N, Real> const& A, Vector<N, Real> const& B, Real C)
{
// Compute the center K = -A^{-1}*B/2.
bool invertible;
Matrix<N, N, Real> invA = Inverse(A, &invertible);
if (!invertible)
{
return false;
}
center = ((Real)-0.5) * (invA * B);
// Compute B^T*A^{-1}*B/4 - C = K^T*A*K - C = -K^T*B/2 - C.
Real rightSide = (Real)-0.5 * Dot(center, B) - C;
if (rightSide == (Real)0)
{
return false;
}
// Compute M = A/(K^T*A*K - C).
Real invRightSide = (Real)1 / rightSide;
Matrix<N, N, Real> M = invRightSide * A;
// Factor into M = R*D*R^T. M is symmetric, so it does not matter whether
// the matrix is stored in row-major or column-major order; they are
// equivalent. The output R, however, is in row-major order.
SymmetricEigensolver<Real> es(N, 32);
Matrix<N, N, Real> rotation;
std::array<Real, N> diagonal;
es.Solve(&M[0], +1); // diagonal[i] are nondecreasing
es.GetEigenvalues(&diagonal[0]);
es.GetEigenvectors(&rotation[0]);
if (es.GetEigenvectorMatrixType() == 0)
{
auto negLast = -rotation.GetCol(N - 1);
rotation.SetCol(N - 1, negLast);
}
for (int d = 0; d < N; ++d)
{
if (diagonal[d] <= (Real)0)
{
return false;
}
extent[d] = (Real)1 / std::sqrt(diagonal[d]);
axis[d] = rotation.GetCol(d);
}
return true;
}
// Public member access.
Vector<N, Real> center;
std::array<Vector<N, Real>, N> axis;
Vector<N, Real> extent;
private:
static void Convert(std::array<Real, (N + 1) * (N + 2) / 2> const& coeff,
Matrix<N, N, Real>& A, Vector<N, Real>& B, Real& C)
{
int i = 0;
C = coeff[i++];
for (int j = 0; j < N; ++j)
{
B[j] = coeff[i++];
}
for (int r = 0; r < N; ++r)
{
for (int c = 0; c < r; ++c)
{
A(r, c) = A(c, r);
}
A(r, r) = coeff[i++];
for (int c = r + 1; c < N; ++c)
{
A(r, c) = coeff[i++] * (Real)0.5;
}
}
}
static void Convert(Matrix<N, N, Real> const& A, Vector<N, Real> const& B,
Real C, std::array<Real, (N + 1) * (N + 2) / 2> & coeff)
{
int i = 0;
coeff[i++] = C;
for (int j = 0; j < N; ++j)
{
coeff[i++] = B[j];
}
for (int r = 0; r < N; ++r)
{
coeff[i++] = A(r, r);
for (int c = r + 1; c < N; ++c)
{
coeff[i++] = A(r, c) * (Real)2;
}
}
}
public:
// Comparisons to support sorted containers.
bool operator==(Hyperellipsoid const& hyperellipsoid) const
{
return center == hyperellipsoid.center && axis == hyperellipsoid.axis
&& extent == hyperellipsoid.extent;
}
bool operator!=(Hyperellipsoid const& hyperellipsoid) const
{
return !operator==(hyperellipsoid);
}
bool operator< (Hyperellipsoid const& hyperellipsoid) const
{
if (center < hyperellipsoid.center)
{
return true;
}
if (center > hyperellipsoid.center)
{
return false;
}
if (axis < hyperellipsoid.axis)
{
return true;
}
if (axis > hyperellipsoid.axis)
{
return false;
}
return extent < hyperellipsoid.extent;
}
bool operator<=(Hyperellipsoid const& hyperellipsoid) const
{
return !hyperellipsoid.operator<(*this);
}
bool operator> (Hyperellipsoid const& hyperellipsoid) const
{
return hyperellipsoid.operator<(*this);
}
bool operator>=(Hyperellipsoid const& hyperellipsoid) const
{
return !operator<(hyperellipsoid);
}
};
// Template aliases for convenience.
template <typename Real>
using Ellipse2 = Hyperellipsoid<2, Real>;
template <typename Real>
using Ellipsoid3 = Hyperellipsoid<3, Real>;
}