You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

338 lines
11 KiB

// David Eberly, Geometric Tools, Redmond WA 98052
// Copyright (c) 1998-2021
// Distributed under the Boost Software License, Version 1.0.
// https://www.boost.org/LICENSE_1_0.txt
// https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
// Version: 4.0.2019.08.13
#pragma once
#include <Mathematics/Logger.h>
#include <algorithm>
#include <vector>
namespace gte
{
class Histogram
{
public:
// In the constructor with input 'int const* samples', set noRescaling
// to 'true' when you want the sample values mapped directly to the
// buckets. Typically, you know that the sample values are in the set
// of numbers {0,1,...,numBuckets-1}, but in the event of out-of-range
// values, the histogram stores a count for those numbers smaller than
// 0 and those numbers larger or equal to numBuckets.
Histogram(int numBuckets, int numSamples, int const* samples, bool noRescaling)
:
mBuckets(numBuckets),
mExcessLess(0),
mExcessGreater(0)
{
LogAssert(numBuckets > 0 && numSamples > 0 && samples != nullptr, "Invalid input.");
std::fill(mBuckets.begin(), mBuckets.end(), 0);
if (noRescaling)
{
// Map to the buckets, also counting out-of-range pixels.
for (int i = 0; i < numSamples; ++i)
{
int value = samples[i];
if (0 <= value)
{
if (value < numBuckets)
{
++mBuckets[value];
}
else
{
++mExcessGreater;
}
}
else
{
++mExcessLess;
}
}
}
else
{
// Compute the extremes.
int minValue = samples[0], maxValue = minValue;
for (int i = 1; i < numSamples; ++i)
{
int value = samples[i];
if (value < minValue)
{
minValue = value;
}
else if (value > maxValue)
{
maxValue = value;
}
}
// Map to the buckets.
if (minValue < maxValue)
{
// The image is not constant.
double numer = static_cast<double>(numBuckets - 1);
double denom = static_cast<double>(maxValue - minValue);
double mult = numer / denom;
for (int i = 0; i < numSamples; ++i)
{
int index = static_cast<int>(mult * static_cast<double>(samples[i] - minValue));
++mBuckets[index];
}
}
else
{
// The image is constant.
mBuckets[0] = numSamples;
}
}
}
Histogram(int numBuckets, int numSamples, float const* samples)
:
mBuckets(numBuckets),
mExcessLess(0),
mExcessGreater(0)
{
LogAssert(numBuckets > 0 && numSamples > 0 && samples != nullptr, "Invalid input.");
std::fill(mBuckets.begin(), mBuckets.end(), 0);
// Compute the extremes.
float minValue = samples[0], maxValue = minValue;
for (int i = 1; i < numSamples; ++i)
{
float value = samples[i];
if (value < minValue)
{
minValue = value;
}
else if (value > maxValue)
{
maxValue = value;
}
}
// Map to the buckets.
if (minValue < maxValue)
{
// The image is not constant.
double numer = static_cast<double>(numBuckets - 1);
double denom = static_cast<double>(maxValue - minValue);
double mult = numer / denom;
for (int i = 0; i < numSamples; ++i)
{
int index = static_cast<int>(mult * static_cast<double>(samples[i] - minValue));
++mBuckets[index];
}
}
else
{
// The image is constant.
mBuckets[0] = numSamples;
}
}
Histogram(int numBuckets, int numSamples, double const* samples)
:
mBuckets(numBuckets),
mExcessLess(0),
mExcessGreater(0)
{
LogAssert(numBuckets > 0 && numSamples > 0 && samples != nullptr, "Invalid input.");
std::fill(mBuckets.begin(), mBuckets.end(), 0);
// Compute the extremes.
double minValue = samples[0], maxValue = minValue;
for (int i = 1; i < numSamples; ++i)
{
double value = samples[i];
if (value < minValue)
{
minValue = value;
}
else if (value > maxValue)
{
maxValue = value;
}
}
// Map to the buckets.
if (minValue < maxValue)
{
// The image is not constant.
double numer = static_cast<double>(numBuckets - 1);
double denom = maxValue - minValue;
double mult = numer / denom;
for (int i = 0; i < numSamples; ++i)
{
int index = static_cast<int>(mult * (samples[i] - minValue));
++mBuckets[index];
}
}
else
{
// The image is constant.
mBuckets[0] = numSamples;
}
}
// Construction when you plan on updating the histogram incrementally.
// The incremental update is implemented only for integer samples and
// no rescaling.
Histogram(int numBuckets)
:
mBuckets(numBuckets),
mExcessLess(0),
mExcessGreater(0)
{
LogAssert(numBuckets > 0, "Invalid input.");
std::fill(mBuckets.begin(), mBuckets.end(), 0);
}
// This function is called when you have used the Histogram(int)
// constructor. No bounds checking is used; you must ensure that the
// input value is in {0,...,numBuckets-1}.
inline void Insert(int value)
{
++mBuckets[value];
}
// This function is called when you have used the Histogram(int)
// constructor. Bounds checking is used.
void InsertCheck(int value)
{
if (0 <= value)
{
if (value < static_cast<int>(mBuckets.size()))
{
++mBuckets[value];
}
else
{
++mExcessGreater;
}
}
else
{
++mExcessLess;
}
}
// Member access.
inline std::vector<int> const& GetBuckets() const
{
return mBuckets;
}
inline int GetExcessLess() const
{
return mExcessLess;
}
inline int GetExcessGreater() const
{
return mExcessGreater;
}
// In the following, define cdf(V) = sum_{i=0}^{V} bucket[i], where
// 0 <= V < B and B is the number of buckets. Define N = cdf(B-1),
// which must be the number of pixels in the image.
// Get the lower tail of the histogram. The returned index L has the
// properties: cdf(L-1)/N < tailAmount and cdf(L)/N >= tailAmount.
int GetLowerTail(double tailAmount)
{
int const numBuckets = static_cast<int>(mBuckets.size());
int hSum = 0;
for (int i = 0; i < numBuckets; ++i)
{
hSum += mBuckets[i];
}
int hTailSum = static_cast<int>(tailAmount * hSum);
int hLowerSum = 0;
int lower;
for (lower = 0; lower < numBuckets; ++lower)
{
hLowerSum += mBuckets[lower];
if (hLowerSum >= hTailSum)
{
break;
}
}
return lower;
}
// Get the upper tail of the histogram. The returned index U has the
// properties: cdf(U)/N >= 1-tailAmount and cdf(U+1) < 1-tailAmount.
int GetUpperTail(double tailAmount)
{
int const numBuckets = static_cast<int>(mBuckets.size());
int hSum = 0;
for (int i = 0; i < numBuckets; ++i)
{
hSum += mBuckets[i];
}
int hTailSum = static_cast<int>(tailAmount * hSum);
int hUpperSum = 0;
int upper;
for (upper = numBuckets - 1; upper >= 0; --upper)
{
hUpperSum += mBuckets[upper];
if (hUpperSum >= hTailSum)
{
break;
}
}
return upper;
}
// Get the lower and upper tails of the histogram. The returned
// indices are L and U and have the properties:
// cdf(L-1)/N < tailAmount/2, cdf(L)/N >= tailAmount/2,
// cdf(U)/N >= 1-tailAmount/2, and cdf(U+1) < 1-tailAmount/2.
void GetTails(double tailAmount, int& lower, int& upper)
{
int const numBuckets = static_cast<int>(mBuckets.size());
int hSum = 0;
for (int i = 0; i < numBuckets; ++i)
{
hSum += mBuckets[i];
}
int hTailSum = static_cast<int>(0.5 * tailAmount * hSum);
int hLowerSum = 0;
for (lower = 0; lower < numBuckets; ++lower)
{
hLowerSum += mBuckets[lower];
if (hLowerSum >= hTailSum)
{
break;
}
}
int hUpperSum = 0;
for (upper = numBuckets - 1; upper >= 0; --upper)
{
hUpperSum += mBuckets[upper];
if (hUpperSum >= hTailSum)
{
break;
}
}
}
private:
std::vector<int> mBuckets;
int mExcessLess, mExcessGreater;
};
}