You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

137 lines
4.6 KiB

// David Eberly, Geometric Tools, Redmond WA 98052
// Copyright (c) 1998-2021
// Distributed under the Boost Software License, Version 1.0.
// https://www.boost.org/LICENSE_1_0.txt
// https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
// Version: 4.0.2019.08.13
#pragma once
#include <Mathematics/RiemannianGeodesic.h>
namespace gte
{
template <typename Real>
class EllipsoidGeodesic : public RiemannianGeodesic<Real>
{
public:
// The ellipsoid is (x/a)^2 + (y/b)^2 + (z/c)^2 = 1, where xExtent is
// 'a', yExtent is 'b', and zExtent is 'c'. The surface is represented
// parametrically by angles u and v, say
// P(u,v) = (x(u,v),y(u,v),z(u,v)),
// P(u,v) =(a*cos(u)*sin(v), b*sin(u)*sin(v), c*cos(v))
// with 0 <= u < 2*pi and 0 <= v <= pi. The first-order derivatives
// are
// dP/du = (-a*sin(u)*sin(v), b*cos(u)*sin(v), 0)
// dP/dv = (a*cos(u)*cos(v), b*sin(u)*cos(v), -c*sin(v))
// The metric tensor elements are
// g_{00} = Dot(dP/du,dP/du)
// g_{01} = Dot(dP/du,dP/dv)
// g_{10} = g_{01}
// g_{11} = Dot(dP/dv,dP/dv)
EllipsoidGeodesic(Real xExtent, Real yExtent, Real zExtent)
:
RiemannianGeodesic<Real>(2),
mXExtent(xExtent),
mYExtent(yExtent),
mZExtent(zExtent)
{
}
virtual ~EllipsoidGeodesic()
{
}
Vector3<Real> ComputePosition(GVector<Real> const& point)
{
Real cos0 = std::cos(point[0]);
Real sin0 = std::sin(point[0]);
Real cos1 = std::cos(point[1]);
Real sin1 = std::sin(point[1]);
return Vector3<Real>
{
mXExtent * cos0 * sin1,
mYExtent * sin0 * sin1,
mZExtent * cos1
};
}
// To compute the geodesic path connecting two parameter points
// (u0,v0) and (u1,v1):
//
// float a, b, c; // the extents of the ellipsoid
// EllipsoidGeodesic<float> EG(a,b,c);
// GVector<float> param0(2), param1(2);
// param0[0] = u0;
// param0[1] = v0;
// param1[0] = u1;
// param1[1] = v1;
//
// int quantity;
// std:vector<GVector<float>> path;
// EG.ComputeGeodesic(param0, param1, quantity, path);
private:
virtual void ComputeMetric(GVector<Real> const& point) override
{
mCos0 = std::cos(point[0]);
mSin0 = std::sin(point[0]);
mCos1 = std::cos(point[1]);
mSin1 = std::sin(point[1]);
mDer0 = { -mXExtent * mSin0 * mSin1, mYExtent * mCos0 * mSin1, (Real)0 };
mDer1 = { mXExtent * mCos0 * mCos1, mYExtent * mSin0 * mCos1, -mZExtent * mSin1 };
this->mMetric(0, 0) = Dot(mDer0, mDer0);
this->mMetric(0, 1) = Dot(mDer0, mDer1);
this->mMetric(1, 0) = this->mMetric(0, 1);
this->mMetric(1, 1) = Dot(mDer1, mDer1);
}
virtual void ComputeChristoffel1(GVector<Real> const&) override
{
Vector3<Real> der00
{
-mXExtent * mCos0 * mSin1,
-mYExtent * mSin0 * mSin1,
(Real)0
};
Vector3<Real> der01
{
-mXExtent * mSin0 * mCos1,
mYExtent * mCos0 * mCos1,
(Real)0
};
Vector3<Real> der11
{
-mXExtent * mCos0 * mSin1,
-mYExtent * mSin0 * mSin1,
-mZExtent * mCos1
};
this->mChristoffel1[0](0, 0) = Dot(der00, mDer0);
this->mChristoffel1[0](0, 1) = Dot(der01, mDer0);
this->mChristoffel1[0](1, 0) = this->mChristoffel1[0](0, 1);
this->mChristoffel1[0](1, 1) = Dot(der11, mDer0);
this->mChristoffel1[1](0, 0) = Dot(der00, mDer1);
this->mChristoffel1[1](0, 1) = Dot(der01, mDer1);
this->mChristoffel1[1](1, 0) = this->mChristoffel1[1](0, 1);
this->mChristoffel1[1](1, 1) = Dot(der11, mDer1);
}
// The ellipsoid axis half-lengths.
Real mXExtent, mYExtent, mZExtent;
// We are guaranteed that RiemannianGeodesic calls ComputeMetric
// before ComputeChristoffel1. Thus, we can compute the surface
// first- and second-order derivatives in ComputeMetric and cache
// the results for use in ComputeChristoffel1.
Real mCos0, mSin0, mCos1, mSin1;
Vector3<Real> mDer0, mDer1;
};
}