You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

203 lines
6.9 KiB

// David Eberly, Geometric Tools, Redmond WA 98052
// Copyright (c) 1998-2021
// Distributed under the Boost Software License, Version 1.0.
// https://www.boost.org/LICENSE_1_0.txt
// https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
// Version: 4.0.2019.08.13
#pragma once
#include <Mathematics/Matrix.h>
#include <Mathematics/Vector2.h>
#include <Mathematics/Hypersphere.h>
#include <Mathematics/SymmetricEigensolver.h>
namespace gte
{
// The quadratic fit is
// 0 = C[0] + C[1]*X + C[2]*Y + C[3]*X^2 + C[4]*Y^2 + C[5]*X*Y
// subject to Length(C) = 1. Minimize E(C) = C^t M C with Length(C) = 1
// and M = (sum_i V_i)(sum_i V_i)^t where
// V = (1, X, Y, X^2, Y^2, X*Y)
// The minimum value is the smallest eigenvalue of M and C is a
// corresponding unit length eigenvector.
//
// Input:
// n = number of points to fit
// p[0..n-1] = array of points to fit
//
// Output:
// c[0..5] = coefficients of quadratic fit (the eigenvector)
// return value of function is nonnegative and a measure of the fit
// (the minimum eigenvalue; 0 = exact fit, positive otherwise)
//
// Canonical forms. The quadratic equation can be factored into
// P^T A P + B^T P + K = 0 where P = (X,Y,Z), K = C[0],
// B = (C[1],C[2],C[3]), and A is a 3x3 symmetric matrix with
// A00 = C[4], A11 = C[5], A22 = C[6], A01 = C[7]/2, A02 = C[8]/2,
// and A12 = C[9]/2. Matrix A = R^T D R where R is orthogonal and
// D is diagonal (using an eigendecomposition). Define
// V = R P = (v0,v1,v2), E = R B = (e0,e1,e2), D = diag(d0,d1,d2)
// and f = K to obtain
// d0 v0^2 + d1 v1^2 + d2 v^2 + e0 v0 + e1 v1 + e2 v2 + f = 0
// The characterization depends on the signs of the d_i.
template <typename Real>
class ApprQuadratic2
{
public:
Real operator()(int numPoints, Vector2<Real> const* points, Real coefficients[6])
{
Matrix<6, 6, Real> A; // constructor sets A to zero
for (int i = 0; i < numPoints; ++i)
{
Real x = points[i][0];
Real y = points[i][1];
Real x2 = x * x;
Real y2 = y * y;
Real xy = x * y;
Real x3 = x * x2;
Real xy2 = x * y2;
Real x2y = x * xy;
Real y3 = y * y2;
Real x4 = x * x3;
Real x2y2 = x * xy2;
Real x3y = x * x2y;
Real y4 = y * y3;
Real xy3 = x * y3;
A(0, 1) += x;
A(0, 2) += y;
A(0, 3) += x2;
A(0, 4) += y2;
A(0, 5) += xy;
A(1, 3) += x3;
A(1, 4) += xy2;
A(1, 5) += x2y;
A(2, 4) += y3;
A(3, 3) += x4;
A(3, 4) += x2y2;
A(3, 5) += x3y;
A(4, 4) += y4;
A(4, 5) += xy3;
}
A(0, 0) = static_cast<Real>(numPoints);
A(1, 1) = A(0, 3);
A(1, 2) = A(0, 5);
A(2, 2) = A(0, 4);
A(2, 3) = A(1, 5);
A(2, 5) = A(1, 4);
A(5, 5) = A(3, 4);
for (int row = 0; row < 6; ++row)
{
for (int col = 0; col < row; ++col)
{
A(row, col) = A(col, row);
}
}
Real invNumPoints = (Real)1 / static_cast<Real>(numPoints);
for (int row = 0; row < 6; ++row)
{
for (int col = 0; col < 6; ++col)
{
A(row, col) *= invNumPoints;
}
}
SymmetricEigensolver<Real> es(6, 1024);
es.Solve(&A[0], +1);
es.GetEigenvector(0, &coefficients[0]);
// For an exact fit, numeric round-off errors might make the
// minimum eigenvalue just slightly negative. Return the
// absolute value because the application might rely on the
// return value being nonnegative.
return std::fabs(es.GetEigenvalue(0));
}
};
// If you think your points are nearly circular, use this. The circle is
// of the form C'[0]+C'[1]*X+C'[2]*Y+C'[3]*(X^2+Y^2), where
// Length(C') = 1. The function returns
// C = (C'[0]/C'[3],C'[1]/C'[3],C'[2]/C'[3]), so the fitted circle is
// C[0]+C[1]*X+C[2]*Y+X^2+Y^2. The center is (xc,yc) = -0.5*(C[1],C[2])
// and the radius is r = sqrt(xc*xc+yc*yc-C[0]).
template <typename Real>
class ApprQuadraticCircle2
{
public:
Real operator()(int numPoints, Vector2<Real> const* points, Circle2<Real>& circle)
{
Matrix<4, 4, Real> A; // constructor sets A to zero
for (int i = 0; i < numPoints; ++i)
{
Real x = points[i][0];
Real y = points[i][1];
Real x2 = x * x;
Real y2 = y * y;
Real xy = x * y;
Real r2 = x2 + y2;
Real xr2 = x * r2;
Real yr2 = y * r2;
Real r4 = r2 * r2;
A(0, 1) += x;
A(0, 2) += y;
A(0, 3) += r2;
A(1, 1) += x2;
A(1, 2) += xy;
A(1, 3) += xr2;
A(2, 2) += y2;
A(2, 3) += yr2;
A(3, 3) += r4;
}
A(0, 0) = static_cast<Real>(numPoints);
for (int row = 0; row < 4; ++row)
{
for (int col = 0; col < row; ++col)
{
A(row, col) = A(col, row);
}
}
Real invNumPoints = (Real)1 / static_cast<Real>(numPoints);
for (int row = 0; row < 4; ++row)
{
for (int col = 0; col < 4; ++col)
{
A(row, col) *= invNumPoints;
}
}
SymmetricEigensolver<Real> es(4, 1024);
es.Solve(&A[0], +1);
Vector<4, Real> evector;
es.GetEigenvector(0, &evector[0]);
// TODO: Guard against zero divide?
Real inv = (Real)1 / evector[3];
Real coefficients[3];
for (int row = 0; row < 3; ++row)
{
coefficients[row] = inv * evector[row];
}
circle.center[0] = (Real)-0.5 * coefficients[1];
circle.center[1] = (Real)-0.5 * coefficients[2];
circle.radius = std::sqrt(std::fabs(Dot(circle.center, circle.center) - coefficients[0]));
// For an exact fit, numeric round-off errors might make the
// minimum eigenvalue just slightly negative. Return the
// absolute value because the application might rely on the
// return value being nonnegative.
return std::fabs(es.GetEigenvalue(0));
}
};
}