You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

129 lines
5.3 KiB

// David Eberly, Geometric Tools, Redmond WA 98052
// Copyright (c) 1998-2021
// Distributed under the Boost Software License, Version 1.0.
// https://www.boost.org/LICENSE_1_0.txt
// https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
// Version: 4.0.2019.08.13
#pragma once
#include <Mathematics/Matrix3x3.h>
#include <Mathematics/SymmetricEigensolver3x3.h>
namespace gte
{
// Least-squares fit of a great circle to unit-length vectors (x,y,z) by
// using distance measurements orthogonal (and measured along great
// circles) to the proposed great circle. The inputs akPoint[] are unit
// length. The returned value is unit length, call it N. The fitted
// great circle is defined by Dot(N,X) = 0, where X is a unit-length
// vector on the great circle.
template <typename Real>
class ApprGreatCircle3
{
public:
void operator()(int numPoints, Vector3<Real> const* points, Vector3<Real>& normal) const
{
// Compute the covariance matrix of the vectors.
Real covar00 = (Real)0, covar01 = (Real)0, covar02 = (Real)0;
Real covar11 = (Real)0, covar12 = (Real)0, covar22 = (Real)0;
for (int i = 0; i < numPoints; i++)
{
Vector3<Real> diff = points[i];
covar00 += diff[0] * diff[0];
covar01 += diff[0] * diff[1];
covar02 += diff[0] * diff[2];
covar11 += diff[1] * diff[1];
covar12 += diff[1] * diff[2];
covar22 += diff[2] * diff[2];
}
Real invNumPoints = (Real)1 / static_cast<Real>(numPoints);
covar00 *= invNumPoints;
covar01 *= invNumPoints;
covar02 *= invNumPoints;
covar11 *= invNumPoints;
covar12 *= invNumPoints;
covar22 *= invNumPoints;
// Solve the eigensystem.
SymmetricEigensolver3x3<Real> es;
std::array<Real, 3> eval;
std::array<std::array<Real, 3>, 3> evec;
es(covar00, covar01, covar02, covar11, covar12, covar22, false, +1,
eval, evec);
normal = evec[0];
}
};
// In addition to the least-squares fit of a great circle, the input
// vectors are projected onto that circle. The sector of smallest angle
// (possibly obtuse) that contains the points is computed. The endpoints
// of the arc of the sector are returned. The returned endpoints A0 and
// A1 are perpendicular to the returned normal N. Moreover, when you view
// the arc by looking at the plane of the great circle with a view
// direction of -N, the arc is traversed counterclockwise starting at A0
// and ending at A1.
template <typename Real>
class ApprGreatArc3
{
public:
void operator()(int numPoints, Vector3<Real> const* points,
Vector3<Real>& normal, Vector3<Real>& arcEnd0,
Vector3<Real>& arcEnd1) const
{
// Get the least-squares great circle for the vectors. The circle
// is on the plane Dot(N,X) = 0. Generate a basis from N.
Vector3<Real> basis[3]; // { N, U, V }
ApprGreatCircle3<Real>()(numPoints, points, basis[0]);
ComputeOrthogonalComplement(1, basis);
// The vectors are X[i] = u[i]*U + v[i]*V + w[i]*N. The
// projections are
// P[i] = (u[i]*U + v[i]*V)/sqrt(u[i]*u[i] + v[i]*v[i])
// The great circle is parameterized by
// C(t) = cos(t)*U + sin(t)*V
// Compute the angles t in [-pi,pi] for the projections onto the
// great circle. It is not necesarily to normalize (u[i],v[i]),
// instead computing t = atan2(v[i],u[i]). The items[] represents
// (u, v, angle).
std::vector<std::array<Real, 3>> items(numPoints);
for (int i = 0; i < numPoints; ++i)
{
items[i][0] = Dot(basis[1], points[i]);
items[i][1] = Dot(basis[2], points[i]);
items[i][2] = std::atan2(items[i][1], items[i][0]);
}
std::sort(items.begin(), items.end(),
[](std::array<Real, 3> const& item0, std::array<Real, 3> const& item1)
{
return item0[2] < item1[2];
}
);
// Locate the pair of consecutive angles whose difference is a
// maximum. Effectively, we are constructing a cone of minimum
// angle that contains the unit-length vectors.
int numPointsM1 = numPoints - 1;
Real maxDiff = (Real)GTE_C_TWO_PI + items[0][2] - items[numPointsM1][2];
int end0 = 0, end1 = numPointsM1;
for (int i0 = 0, i1 = 1; i0 < numPointsM1; i0 = i1++)
{
Real diff = items[i1][2] - items[i0][2];
if (diff > maxDiff)
{
maxDiff = diff;
end0 = i1;
end1 = i0;
}
}
normal = basis[0];
arcEnd0 = items[end0][0] * basis[1] + items[end0][1] * basis[2];
arcEnd1 = items[end1][0] * basis[1] + items[end1][1] * basis[2];
Normalize(arcEnd0);
Normalize(arcEnd1);
}
};
}