You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

339 lines
14 KiB

// David Eberly, Geometric Tools, Redmond WA 98052
// Copyright (c) 1998-2021
// Distributed under the Boost Software License, Version 1.0.
// https://www.boost.org/LICENSE_1_0.txt
// https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
// Version: 4.0.2019.08.13
#pragma once
#include <Mathematics/GaussNewtonMinimizer.h>
#include <Mathematics/LevenbergMarquardtMinimizer.h>
#include <Mathematics/RootsPolynomial.h>
// The cone vertex is V, the unit-length axis direction is U and the
// cone angle is A in (0,pi/2). The cone is defined algebraically by
// those points X for which
// Dot(U,X-V)/Length(X-V) = cos(A)
// This can be written as a quadratic equation
// (V-X)^T * (cos(A)^2 - U * U^T) * (V-X) = 0
// with the implicit constraint that Dot(U, X-V) > 0 (X is on the
// "positive" cone). Define W = U/cos(A), so Length(W) > 1 and
// F(X;V,W) = (V-X)^T * (I - W * W^T) * (V-X) = 0
// The nonlinear least squares fitting of points {X[i]}_{i=0}^{n-1}
// computes V and W to minimize the error function
// E(V,W) = sum_{i=0}^{n-1} F(X[i];V,W)^2
// I recommend using the Gauss-Newton minimizer when your cone points
// are truly nearly a cone; otherwise, try the Levenberg-Marquardt
// minimizer.
//
// The mathematics used in this implementation are found in
// https://www.geometrictools.com/Documentation/LeastSquaresFitting.pdf
// In particular, the details for choosing an initial cone for fitting
// are somewhat complicated.
namespace gte
{
template <typename Real>
class ApprCone3
{
public:
ApprCone3()
:
mNumPoints(0),
mPoints(nullptr)
{
// F[i](V,W) = D^T * (I - W * W^T) * D, D = V - X[i], P = (V,W)
mFFunction = [this](GVector<Real> const& P, GVector<Real>& F)
{
Vector<3, Real> V = { P[0], P[1], P[2] };
Vector<3, Real> W = { P[3], P[4], P[5] };
for (int i = 0; i < mNumPoints; ++i)
{
Vector<3, Real> delta = V - mPoints[i];
Real deltaDotW = Dot(delta, W);
F[i] = Dot(delta, delta) - deltaDotW * deltaDotW;
}
};
// dF[i]/dV = 2 * (D - Dot(W, D) * W)
// dF[i]/dW = -2 * Dot(W, D) * D
mJFunction = [this](GVector<Real> const& P, GMatrix<Real>& J)
{
Vector<3, Real> V = { P[0], P[1], P[2] };
Vector<3, Real> W = { P[3], P[4], P[5] };
for (int row = 0; row < mNumPoints; ++row)
{
Vector<3, Real> delta = V - mPoints[row];
Real deltaDotW = Dot(delta, W);
Vector<3, Real> temp0 = delta - deltaDotW * W;
Vector<3, Real> temp1 = deltaDotW * delta;
for (int col = 0; col < 3; ++col)
{
J(row, col) = (Real)2 * temp0[col];
J(row, col + 3) = (Real)-2 * temp1[col];
}
}
};
}
// If you want to specify that coneVertex, coneAxis and coneAngle
// are the initial guesses for the minimizer, set the parameter
// useConeInputAsInitialGuess to 'true'. If you want the function
// to compute initial guesses, set that parameter to 'false'.
// A Gauss-Newton minimizer is used to fit a cone using nonlinear
// least-squares. The fitted cone is returned in coneVertex,
// coneAxis and coneAngle. See GaussNewtonMinimizer.h for a
// description of the least-squares algorithm and the parameters
// that it requires.
typename GaussNewtonMinimizer<Real>::Result
operator()(int numPoints, Vector<3, Real> const* points,
size_t maxIterations, Real updateLengthTolerance, Real errorDifferenceTolerance,
bool useConeInputAsInitialGuess,
Vector<3, Real>& coneVertex, Vector<3, Real>& coneAxis, Real& coneAngle)
{
mNumPoints = numPoints;
mPoints = points;
GaussNewtonMinimizer<Real> minimizer(6, mNumPoints, mFFunction, mJFunction);
Real coneCosAngle;
if (useConeInputAsInitialGuess)
{
Normalize(coneAxis);
coneCosAngle = std::cos(coneAngle);
}
else
{
ComputeInitialCone(coneVertex, coneAxis, coneCosAngle);
}
// The initial guess for the cone vertex.
GVector<Real> initial(6);
initial[0] = coneVertex[0];
initial[1] = coneVertex[1];
initial[2] = coneVertex[2];
// The initial guess for the weighted cone axis.
initial[3] = coneAxis[0] / coneCosAngle;
initial[4] = coneAxis[1] / coneCosAngle;
initial[5] = coneAxis[2] / coneCosAngle;
auto result = minimizer(initial, maxIterations, updateLengthTolerance,
errorDifferenceTolerance);
// No test is made for result.converged so that we return some
// estimates of the cone. The caller can decide how to respond
// when result.converged is false.
for (int i = 0; i < 3; ++i)
{
coneVertex[i] = result.minLocation[i];
coneAxis[i] = result.minLocation[i + 3];
}
// We know that coneCosAngle will be nonnegative. The std::min
// call guards against rounding errors leading to a number
// slightly larger than 1. The clamping ensures std::acos will
// not return a NaN.
coneCosAngle = std::min((Real)1 / Normalize(coneAxis), (Real)1);
coneAngle = std::acos(coneCosAngle);
mNumPoints = 0;
mPoints = nullptr;
return result;
}
// The parameters coneVertex, coneAxis and coneAngle are in/out
// variables. The caller must provide initial guesses for these.
// The function estimates the cone parameters and returns them. See
// GteGaussNewtonMinimizer.h for a description of the least-squares
// algorithm and the parameters that it requires.
typename LevenbergMarquardtMinimizer<Real>::Result
operator()(int numPoints, Vector<3, Real> const* points,
size_t maxIterations, Real updateLengthTolerance, Real errorDifferenceTolerance,
Real lambdaFactor, Real lambdaAdjust, size_t maxAdjustments,
bool useConeInputAsInitialGuess,
Vector<3, Real>& coneVertex, Vector<3, Real>& coneAxis, Real& coneAngle)
{
mNumPoints = numPoints;
mPoints = points;
LevenbergMarquardtMinimizer<Real> minimizer(6, mNumPoints, mFFunction, mJFunction);
Real coneCosAngle;
if (useConeInputAsInitialGuess)
{
Normalize(coneAxis);
coneCosAngle = std::cos(coneAngle);
}
else
{
ComputeInitialCone(coneVertex, coneAxis, coneCosAngle);
}
// The initial guess for the cone vertex.
GVector<Real> initial(6);
initial[0] = coneVertex[0];
initial[1] = coneVertex[1];
initial[2] = coneVertex[2];
// The initial guess for the weighted cone axis.
initial[3] = coneAxis[0] / coneCosAngle;
initial[4] = coneAxis[1] / coneCosAngle;
initial[5] = coneAxis[2] / coneCosAngle;
auto result = minimizer(initial, maxIterations, updateLengthTolerance,
errorDifferenceTolerance, lambdaFactor, lambdaAdjust, maxAdjustments);
// No test is made for result.converged so that we return some
// estimates of the cone. The caller can decide how to respond
// when result.converged is false.
for (int i = 0; i < 3; ++i)
{
coneVertex[i] = result.minLocation[i];
coneAxis[i] = result.minLocation[i + 3];
}
// We know that coneCosAngle will be nonnegative. The std::min
// call guards against rounding errors leading to a number
// slightly larger than 1. The clamping ensures std::acos will
// not return a NaN.
coneCosAngle = std::min((Real)1 / Normalize(coneAxis), (Real)1);
coneAngle = std::acos(coneCosAngle);
mNumPoints = 0;
mPoints = nullptr;
return result;
}
private:
void ComputeInitialCone(Vector<3, Real>& coneVertex, Vector<3, Real>& coneAxis, Real& coneCosAngle)
{
// Compute the average of the sample points.
Vector<3, Real> center{ (Real)0, (Real)0, (Real)0 };
Real const invNumPoints = (Real)1 / (Real)mNumPoints;
for (int i = 0; i < mNumPoints; ++i)
{
center += mPoints[i];
}
center *= invNumPoints;
// The cone axis is estimated from ZZTZ (see the PDF).
coneAxis = { (Real)0, (Real)0, (Real)0 };
for (int i = 0; i < mNumPoints; ++i)
{
Vector<3, Real> diff = mPoints[i] - center;
coneAxis += Dot(diff, diff) * diff;
}
coneAxis *= invNumPoints;
Normalize(coneAxis);
// Compute the averages of powers and products of powers of
// a[i] = Dot(U,X[i]-C) and b[i] = Dot(X[i]-C,X[i]-C).
Real c10 = (Real)0, c20 = (Real)0, c30 = (Real)0, c01 = (Real)0;
Real c02 = (Real)0, c11 = (Real)0, c21 = (Real)0;
for (int i = 0; i < mNumPoints; ++i)
{
Vector<3, Real> diff = mPoints[i] - center;
Real ai = Dot(coneAxis, diff);
Real aisqr = ai * ai;
Real bi = Dot(diff, diff);
c10 += ai;
c20 += aisqr;
c30 += aisqr * ai;
c01 += bi;
c02 += bi * bi;
c11 += ai * bi;
c21 += aisqr * bi;
}
c10 *= invNumPoints;
c20 *= invNumPoints;
c30 *= invNumPoints;
c01 *= invNumPoints;
c02 *= invNumPoints;
c11 *= invNumPoints;
c21 *= invNumPoints;
// Compute the coefficients of p3(t) and q3(t).
Real e0 = (Real)3 * c10;
Real e1 = (Real)2 * c20 + c01;
Real e2 = c11;
Real e3 = (Real)3 * c20;
Real e4 = c30;
// Compute the coefficients of g(t).
Real g0 = c11 * c21 - c02 * c30;
Real g1 = c01 * c21 - (Real)3 * c02 * c20 + (Real)2 * (c20 * c21 - c11 * (c30 - c11));
Real g2 = (Real)3 * (c11 * (c01 - c20) + c10 * (c21 - c02));
Real g3 = c21 - c02 + c01 * (c01 + c20) + (Real)2 * (c10 * (c30 - c11) - c20 * c20);
Real g4 = c30 - c11 + c10 * (c01 - c20);
// Compute the roots of g(t) = 0.
std::map<Real, int> rmMap;
RootsPolynomial<Real>::SolveQuartic(g0, g1, g2, g3, g4, rmMap);
// Locate the positive root t that leads to an s = cos(theta)
// in (0,1) and that has minimum least-squares error. In theory,
// there must always be such a root, but floating-point rounding
// errors might lead to no such root. The implementation returns
// the center as the estimate of V and pi/4 as the estimate of
// the angle (s = 1/2).
std::vector<std::array<Real, 3>> info;
Real s, t;
for (auto const& element : rmMap)
{
t = element.first;
if (t > (Real)0)
{
Real p3 = e2 + t * (e1 + t * (e0 + t));
if (p3 != (Real)0)
{
Real q3 = e4 + t * (e3 + t * (e0 + t));
s = q3 / p3;
if ((Real)0 < s && s < (Real)1)
{
Real error(0);
for (int i = 0; i < mNumPoints; ++i)
{
Vector<3, Real> diff = mPoints[i] - center;
Real ai = Dot(coneAxis, diff);
Real bi = Dot(diff, diff);
Real tpai = t + ai;
Real Fi = s * (bi + t * ((Real)2 * ai + t)) - tpai * tpai;
error += Fi * Fi;
}
error *= invNumPoints;
std::array<Real, 3> item = { s, t, error };
info.push_back(item);
}
}
}
}
Real minError = std::numeric_limits<Real>::max();
std::array<Real, 3> minItem = { (Real)0, (Real)0, minError };
for (auto const& item : info)
{
if (item[2] < minError)
{
minItem = item;
}
}
if (minItem[2] < std::numeric_limits<Real>::max())
{
// minItem = { minS, minT, minError }
coneVertex = center - minItem[1] * coneAxis;
coneCosAngle = std::sqrt(minItem[0]);
}
else
{
coneVertex = center;
coneCosAngle = (Real)GTE_C_INV_SQRT_2;
}
}
int mNumPoints;
Vector<3, Real> const* mPoints;
std::function<void(GVector<Real> const&, GVector<Real>&)> mFFunction;
std::function<void(GVector<Real> const&, GMatrix<Real>&)> mJFunction;
};
}