You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

502 lines
20 KiB

// David Eberly, Geometric Tools, Redmond WA 98052
// Copyright (c) 1998-2021
// Distributed under the Boost Software License, Version 1.0.
// https://www.boost.org/LICENSE_1_0.txt
// https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
// Version: 4.0.2021.03.15
#pragma once
#include <Mathematics/ArbitraryPrecision.h>
#include <Mathematics/QFNumber.h>
// The conversion functions here are used to obtain arbitrary-precision
// approximations to rational numbers and to quadratic field numbers.
// The arbitrary-precision arithmetic is described in
// https://www.geometrictools.com/Documentation/ArbitraryPrecision.pdf
// The quadratic field numbers and conversions are described in
// https://www.geometrictools.com/Documentation/QuadraticFields.pdf
namespace gte
{
template <typename Rational>
class APConversion
{
public:
using QFN1 = QFNumber<Rational, 1>;
using QFN2 = QFNumber<Rational, 2>;
// Construction and destruction.
APConversion(int32_t precision, uint32_t maxIterations)
:
mZero(0),
mOne(1),
mThree(3),
mFive(5),
mPrecision(precision),
mMaxIterations(maxIterations),
mThreshold(std::ldexp(mOne, -mPrecision))
{
LogAssert(precision > 0, "Invalid precision.");
LogAssert(maxIterations > 0, "Invalid maximum iterations.");
}
~APConversion()
{
}
// Member access.
void SetPrecision(int32_t precision)
{
LogAssert(precision > 0, "Invalid precision.");
mPrecision = precision;
mThreshold = std::ldexp(mOne, -mPrecision);
}
void SetMaxIterations(uint32_t maxIterations)
{
LogAssert(maxIterations > 0, "Invalid maximum iterations.");
mMaxIterations = maxIterations;
}
inline int32_t GetPrecision() const
{
return mPrecision;
}
inline uint32_t GetMaxIterations() const
{
return mMaxIterations;
}
// Disallow copying and moving.
APConversion(APConversion const&) = delete;
APConversion(APConversion&&) = delete;
APConversion& operator=(APConversion const&) = delete;
APConversion& operator=(APConversion&&) = delete;
// The input a^2 is rational, but a itself is usually irrational,
// although a rational value is allowed. Compute a bounding interval
// for the root, aMin <= a <= aMax, where the endpoints are both
// within the specified precision.
uint32_t EstimateSqrt(Rational const& aSqr, Rational& aMin, Rational& aMax)
{
// Factor a^2 = r^2 * 2^e, where r^2 in [1/2,1). Compute s^2 and
// the exponent used to generate the estimate of sqrt(a^2).
Rational sSqr;
int exponentA;
PreprocessSqr(aSqr, sSqr, exponentA);
// Use the FPU to estimate s = sqrt(sSqr) to 53-bit precision with
// rounding up. Multiply by the appropriate exponent to obtain
// upper bound aMax > a.
aMax = GetMaxOfSqrt(sSqr, exponentA);
// Compute a lower bound aMin < a.
aMin = aSqr / aMax;
// Compute Newton iterates until convergence. The estimate closest
// to a is aMin with aMin <= a <= aMax and a - aMin <= aMax - a.
uint32_t iterate;
for (iterate = 1; iterate <= mMaxIterations; ++iterate)
{
if (aMax - aMin < mThreshold)
{
break;
}
// Compute the average aMax = (aMin + aMax) / 2. Round up
// to twice the precision to avoid quadratic growth in the
// number of bits and to ensure that aMin can increase.
aMax = std::ldexp(aMin + aMax, -1);
Convert(aMax, 2 * mPrecision, FE_UPWARD, aMax);
aMin = aSqr / aMax;
}
return iterate;
}
// Compute an estimate of the root when you do not need a bounding
// interval.
uint32_t EstimateSqrt(Rational const& aSqr, Rational& a)
{
// Compute a bounding interval aMin <= a <= aMax.
Rational aMin, aMax;
uint32_t numIterates = EstimateSqrt(aSqr, aMin, aMax);
// Use the average of the interval endpoints as the estimate.
a = std::ldexp(aMin + aMax, -1);
return numIterates;
}
uint32_t EstimateApB(Rational const& aSqr, Rational const& bSqr,
Rational& tMin, Rational& tMax)
{
// Factor a^2 = r^2 * 2^e, where r^2 in [1/2,1). Compute u^2 and
// the exponent used to generate the estimate of sqrt(a^2).
Rational uSqr;
int32_t exponentA;
PreprocessSqr(aSqr, uSqr, exponentA);
// Factor b^2 = s^2 * 2^e, where s^2 in [1/2,1). Compute v^2 and
// the exponent used to generate the estimate of sqrt(b^2).
Rational vSqr;
int32_t exponentB;
PreprocessSqr(bSqr, vSqr, exponentB);
// Use the FPU to estimate u = sqrt(u^2) and v = sqrt(v^2) to
// 53 bits of precision with rounding up. Multiply by the
// appropriate exponents to obtain upper bounds aMax > a and
// bMax > b. This ensures tMax = aMax + bMax > a + b.
Rational aMax = GetMaxOfSqrt(uSqr, exponentA);
Rational bMax = GetMaxOfSqrt(vSqr, exponentB);
tMax = aMax + bMax;
// Compute a lower bound tMin < a + b.
Rational a2pb2 = aSqr + bSqr;
Rational a2mb2 = aSqr - bSqr;
Rational a2mb2Sqr = a2mb2 * a2mb2;
Rational tMaxSqr = tMax * tMax;
tMin = (a2pb2 * tMaxSqr - a2mb2Sqr) / (tMax * (tMaxSqr - a2pb2));
// Compute Newton iterates until convergence. The estimate closest
// to a + b is tMin with tMin < a + b < tMax and
// (a + b) - tMin < tMax - (a + b).
uint32_t iterate;
for (iterate = 1; iterate <= mMaxIterations; ++iterate)
{
if (tMax - tMin < mThreshold)
{
break;
}
// Compute the weighted average tMax = (3*tMin + tMax) / 4.
// Round up to twice the precision to avoid quadratic growth
// in the number of bits and to ensure that tMin can increase.
tMax = std::ldexp(mThree * tMax + tMin, -2);
Convert(tMax, 2 * mPrecision, FE_UPWARD, tMax);
tMaxSqr = tMax * tMax;
tMin = (a2pb2 * tMaxSqr - a2mb2Sqr) / (tMax * (tMaxSqr - a2pb2));
}
return iterate;
}
uint32_t EstimateAmB(Rational const& aSqr, Rational const& bSqr,
Rational& tMin, Rational& tMax)
{
// The return value of the function.
uint32_t iterate = 0;
// Compute various quantities that are used later in the code.
Rational a2tb2 = aSqr * bSqr; // a^2 * b^2
Rational a2pb2 = aSqr + bSqr; // a^2 + b^2
Rational a2mb2 = aSqr - bSqr; // a^2 - b^2
Rational a2mb2Sqr = a2mb2 * a2mb2; // (a^2 - b^2)^2
Rational twoa2pb2 = std::ldexp(a2pb2, 1); // 2 * (a^2 + b^2)
// Factor a^2 = r^2 * 2^e, where r^2 in [1/2,1). Compute u^2 and
// the exponent used to generate the estimate of sqrt(a^2).
Rational uSqr;
int32_t exponentA;
PreprocessSqr(aSqr, uSqr, exponentA);
// Factor b^2 = s^2 * 2^e, where s^2 in [1/2,1). Compute v^2 and
// the exponent used to generate the estimate of sqrt(b^2).
Rational vSqr;
int32_t exponentB;
PreprocessSqr(bSqr, vSqr, exponentB);
// Compute the sign of f''(a-b)/8 = a^2 - 3*a*b + b^2. It can be
// shown that Sign(a^2-3*a*b+b^2) = Sign(a^4-7*a^2*b^2+b^4) =
// Sign((a^2-b^2)^2-5*a^2*b^2).
Rational signSecDer = a2mb2Sqr - mFive * a2tb2;
// Local variables shared by the two main blocks of code.
Rational aMin, aMax, bMin, bMax, tMinSqr, tMaxSqr, tMid, tMidSqr, f;
if (signSecDer > mZero)
{
// Choose an initial guess tMin < a-b. Use the FPU to
// estimate u = sqrt(u^2) and v = sqrt(v^2) to 53 bits of
// precision with specified rounding. Multiply by the
// appropriate exponents to obtain tMin = aMin - bMax < a-b.
aMin = GetMinOfSqrt(uSqr, exponentA);
bMax = GetMaxOfSqrt(vSqr, exponentB);
tMin = aMin - bMax;
// When a-b is nearly zero, it is possible the lower bound is
// negative. Clamp tMin to zero to stay on the nonnegative
// t-axis where the f"-positive basin is.
if (tMin < mZero)
{
tMin = mZero;
}
// Test whether tMin is in the positive f"(t) basin containing
// a-b. If it is not, compute a tMin that is in the basis. The
// sign test is applied to f"(t)/4 = 3*t^2 - (a^2+b^2).
tMinSqr = tMin * tMin;
signSecDer = mThree * tMinSqr - a2pb2;
if (signSecDer < mZero)
{
// The initial guess satisfies f"(tMin) < 0. Compute an
// upper bound tMax > a-b and bisect [tMin,tMax] until
// either the t-value is an estimate to a-b within the
// specified precision or until f"(t) >= 0 and f(t) >= 0.
// In the latter case, continue on to Newton's method,
// which is then guaranteed to converge.
aMax = GetMaxOfSqrt(uSqr, exponentA);
bMin = GetMinOfSqrt(vSqr, exponentB);
tMax = aMax - bMin;
for (iterate = 1; iterate <= mMaxIterations; ++iterate)
{
if (tMax - tMin < mThreshold)
{
return iterate;
}
tMid = std::ldexp(tMin + tMax, -1);
tMidSqr = tMid * tMid;
signSecDer = mThree * tMidSqr - a2pb2;
if (signSecDer >= mZero)
{
f = tMidSqr * (tMidSqr - twoa2pb2) + a2mb2Sqr;
if (f >= mZero)
{
tMin = tMid;
tMinSqr = tMidSqr;
break;
}
else
{
// Round up to twice the precision to avoid
// quadratic growth in the number of bits.
tMax = tMid;
Convert(tMax, 2 * mPrecision, FE_UPWARD, tMax);
}
}
else
{
// Round down to twice the precision to avoid
// quadratic growth in the number of bits.
tMin = tMid;
Convert(tMin, 2 * mPrecision, FE_DOWNWARD, tMin);
}
}
}
// Compute an upper bound tMax > a-b.
tMax = (a2pb2 * tMinSqr - a2mb2Sqr) / (tMin * (tMinSqr - a2pb2));
// Compute Newton iterates until convergence. The estimate
// closest to a-b is tMax with tMin < a-b < tMax and
// tMax - (a-b) < (a-b) - tMin.
for (iterate = 1; iterate <= mMaxIterations; ++iterate)
{
if (tMax - tMin < mThreshold)
{
break;
}
// Compute the weighted average tMin = (3*tMin+tMax)/4.
// Round down to twice the precision to avoid quadratic
// growth in the number of bits and to ensure that tMax
// can decrease.
tMin = std::ldexp(mThree * tMin + tMax, -2);
Convert(tMin, 2 * mPrecision, FE_DOWNWARD, tMin);
tMinSqr = tMin * tMin;
tMax = (a2pb2 * tMinSqr - a2mb2Sqr) / (tMin * (tMinSqr - a2pb2));
}
return iterate;
}
if (signSecDer < mZero)
{
// Choose an initial guess tMax > a-b. Use the FPU to
// estimate u = sqrt(u^2) and v = sqrt(v^2) to 53 bits of
// precision with specified rounding. Multiply by the
// appropriate exponents to obtain tMax = aMax - bMin > a-b.
aMax = GetMaxOfSqrt(uSqr, exponentA);
bMin = GetMinOfSqrt(vSqr, exponentB);
tMax = aMax - bMin;
// Test whether tMax is in the negative f"(t) basin containing
// a-b. If it is not, compute a tMax that is in the basis. The
// sign test is applied to f"(t)/4 = 3*t^2 - (a^2+b^2).
tMaxSqr = tMax * tMax;
signSecDer = mThree * tMaxSqr - a2pb2;
if (signSecDer > mZero)
{
// The initial guess satisfies f"(tMax) > 0. Compute a
// lower bound tMin < a-b and bisect [tMin,tMax] until
// either the t-value is an estimate to a-b within the
// specified precision or until f"(t) <= 0 and f(t) <= 0.
// In the latter case, continue on to Newton's method,
// which is then guaranteed to converge.
aMin = GetMinOfSqrt(uSqr, exponentA);
bMax = GetMaxOfSqrt(vSqr, exponentB);
tMin = aMin - bMax;
for (iterate = 1; iterate <= mMaxIterations; ++iterate)
{
if (tMax - tMin < mThreshold)
{
return iterate;
}
tMid = std::ldexp(tMin + tMax, -1);
tMidSqr = tMid * tMid;
signSecDer = mThree * tMidSqr - a2pb2;
if (signSecDer <= mZero)
{
f = tMidSqr * (tMidSqr - twoa2pb2) + a2mb2Sqr;
if (f <= mZero)
{
tMax = tMid;
tMaxSqr = tMidSqr;
break;
}
else
{
// Round down to twice the precision to avoid
// quadratic growth in the number of bits.
tMin = tMid;
Convert(tMin, 2 * mPrecision, FE_DOWNWARD, tMin);
}
}
else
{
// Round up to twice the precision to avoid
// quadratic growth in the number of bits.
tMax = tMid;
Convert(tMax, 2 * mPrecision, FE_UPWARD, tMax);
}
}
}
// Compute a lower bound tMin < a-b.
tMin = (a2pb2 * tMaxSqr - a2mb2Sqr) / (tMax * (tMaxSqr - a2pb2));
// Compute Newton iterates until convergence. The estimate
// closest to a-b is tMin with tMin < a - b < tMax and
// (a-b) - tMin < tMax - (a-b).
for (iterate = 1; iterate <= mMaxIterations; ++iterate)
{
if (tMax - tMin < mThreshold)
{
break;
}
// Compute the weighted average tMax = (3*tMax+tMin)/4.
// Round up to twice the precision to avoid quadratic
// growth in the number of bits and to ensure that tMin
// can increase.
tMax = std::ldexp(mThree * tMax + tMin, -2);
Convert(tMax, 2 * mPrecision, FE_UPWARD, tMax);
tMaxSqr = tMax * tMax;
tMin = (a2pb2 * tMaxSqr - a2mb2Sqr) / (tMax * (tMaxSqr - a2pb2));
}
return iterate;
}
// The sign of the second derivative is Sign(a^4-7*a^2*b^2+b^4)
// and cannot be zero. Define rational r = a^2/b^2 so that
// a^4-7*a^2*b^2+b^4 = 0. This implies r^2 - 7*r^2 + 1 = 0. The
// irrational roots are r = (7 +- sqrt(45))/2, which is a
// contradiction.
LogError("This second derivative cannot be zero at a-b.");
}
// Compute a bounding interval for the root, qMin <= q <= qMax, where
// the endpoints are both within the specified precision.
uint32_t Estimate(QFN1 const& q, Rational& qMin, Rational& qMax)
{
Rational const& x = q.x[0];
Rational const& y = q.x[1];
Rational const& d = q.d;
uint32_t numIterates;
if (d != mZero && y != mZero)
{
Rational aSqr = y * y * d;
numIterates = EstimateSqrt(aSqr, qMin, qMax);
if (y > mZero)
{
qMin = x + qMin;
qMax = x + qMax;
}
else
{
Rational diff = x - qMax;
qMax = x - qMin;
qMin = diff;
}
}
else
{
numIterates = 0;
qMin = x;
qMax = x;
}
return numIterates;
}
// Compute an estimate of the root when you do not need a bounding
// interval.
uint32_t Estimate(QFN1 const& q, Rational& qEstimate)
{
// Compute a bounding interval qMin <= q <= qMax.
Rational qMin, qMax;
uint32_t numIterates = Estimate(q, qMin, qMax);
// Use the average of the interval endpoints as the estimate.
qEstimate = std::ldexp(qMin + qMax, -1);
return numIterates;
}
private:
void PreprocessSqr(Rational const& aSqr, Rational& rSqr, int& exponentA)
{
// Factor a^2 = r^2 * 2^e, where r^2 in [1/2,1).
int32_t exponentASqr;
rSqr = std::frexp(aSqr, &exponentASqr);
if (exponentASqr & 1) // odd exponent
{
// a = sqrt(2*r^2) * 2^{(e-1)/2}
exponentA = (exponentASqr - 1) / 2;
rSqr = std::ldexp(rSqr, 1); // = 2*rSqr
// rSqr in [1,2)
}
else // even exponent
{
// a = sqrt(r^2) * 2^{e/2}
exponentA = exponentASqr / 2;
// rSqr in [1/2,1)
}
}
Rational GetMinOfSqrt(Rational const& rSqr, int exponent)
{
// Compute a lower bound on the square root of r^2.
double lowerRSqr = 0.0;
Convert(rSqr, FE_DOWNWARD, lowerRSqr);
double sqrtLowerRSqr = std::sqrt(lowerRSqr);
Rational aMin = std::nextafter(sqrtLowerRSqr,
-std::numeric_limits<double>::max());
aMin = std::ldexp(aMin, exponent);
return aMin;
}
Rational GetMaxOfSqrt(Rational const& rSqr, int exponent)
{
// Compute an upper bound on the square root of r^2.
double upperRSqr = 0.0;
Convert(rSqr, FE_UPWARD, upperRSqr);
double sqrtUpperRSqr = std::sqrt(upperRSqr);
Rational aMax = std::nextafter(sqrtUpperRSqr,
+std::numeric_limits<double>::max());
aMax = std::ldexp(aMax, exponent);
return aMax;
}
Rational const mZero, mOne, mThree, mFive;
int32_t mPrecision;
uint32_t mMaxIterations;
Rational mThreshold;
};
}