You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

802 lines
32 KiB

// David Eberly, Geometric Tools, Redmond WA 98052
// Copyright (c) 1998-2021
// Distributed under the Boost Software License, Version 1.0.
// https://www.boost.org/LICENSE_1_0.txt
// https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
// Version: 4.0.2019.08.13
#pragma once
#include <Mathematics/Math.h>
#include <Mathematics/RangeIteration.h>
#include <algorithm>
#include <cstring>
#include <vector>
// The SymmetricEigensolver class is an implementation of Algorithm 8.2.3
// (Symmetric QR Algorithm) described in "Matrix Computations, 2nd edition"
// by G. H. Golub and C. F. Van Loan, The Johns Hopkins University Press,
// Baltimore MD, Fourth Printing 1993. Algorithm 8.2.1 (Householder
// Tridiagonalization) is used to reduce matrix A to tridiagonal T.
// Algorithm 8.2.2 (Implicit Symmetric QR Step with Wilkinson Shift) is
// used for the iterative reduction from tridiagonal to diagonal. If A is
// the original matrix, D is the diagonal matrix of eigenvalues, and Q is
// the orthogonal matrix of eigenvectors, then theoretically Q^T*A*Q = D.
// Numerically, we have errors E = Q^T*A*Q - D. Algorithm 8.2.3 mentions
// that one expects |E| is approximately u*|A|, where |M| denotes the
// Frobenius norm of M and where u is the unit roundoff for the
// floating-point arithmetic: 2^{-23} for 'float', which is FLT_EPSILON
// = 1.192092896e-7f, and 2^{-52} for'double', which is DBL_EPSILON
// = 2.2204460492503131e-16.
//
// The condition |a(i,i+1)| <= epsilon*(|a(i,i) + a(i+1,i+1)|) used to
// determine when the reduction decouples to smaller problems is implemented
// as: sum = |a(i,i)| + |a(i+1,i+1)|; sum + |a(i,i+1)| == sum. The idea is
// that the superdiagonal term is small relative to its diagonal neighbors,
// and so it is effectively zero. The unit tests have shown that this
// interpretation of decoupling is effective.
//
// The authors suggest that once you have the tridiagonal matrix, a practical
// implementation will store the diagonal and superdiagonal entries in linear
// arrays, ignoring the theoretically zero values not in the 3-band. This is
// good for cache coherence. The authors also suggest storing the Householder
// vectors in the lower-triangular portion of the matrix to save memory. The
// implementation uses both suggestions.
//
// For matrices with randomly generated values in [0,1], the unit tests
// produce the following information for N-by-N matrices.
//
// N |A| |E| |E|/|A| iterations
// -------------------------------------------
// 2 1.2332 5.5511e-17 4.5011e-17 1
// 3 2.0024 1.1818e-15 5.9020e-16 5
// 4 2.8708 9.9287e-16 3.4585e-16 7
// 5 2.9040 2.5958e-15 8.9388e-16 9
// 6 4.0427 2.2434e-15 5.5493e-16 12
// 7 5.0276 3.2456e-15 6.4555e-16 15
// 8 5.4468 6.5626e-15 1.2048e-15 15
// 9 6.1510 4.0317e-15 6.5545e-16 17
// 10 6.7523 4.9334e-15 7.3062e-16 21
// 11 7.1322 7.1347e-15 1.0003e-15 22
// 12 7.8324 5.6106e-15 7.1633e-16 24
// 13 8.1073 5.1366e-15 6.3357e-16 25
// 14 8.6257 8.3496e-15 9.6798e-16 29
// 15 9.2603 6.9526e-15 7.5080e-16 31
// 16 9.9853 6.5807e-15 6.5904e-16 32
// 17 10.5388 8.0931e-15 7.6793e-16 35
// 18 11.2377 1.1149e-14 9.9218e-16 38
// 19 11.7105 1.0711e-14 9.1470e-16 42
// 20 12.2227 1.7723e-14 1.4500e-15 42
// 21 12.7411 1.2515e-14 9.8231e-16 47
// 22 13.4462 1.2645e-14 9.4046e-16 50
// 23 13.9541 1.2899e-14 9.2444e-16 47
// 24 14.3298 1.6337e-14 1.1400e-15 53
// 25 14.8050 1.4760e-14 9.9701e-16 54
// 26 15.3914 1.7076e-14 1.1094e-15 57
// 27 15.8430 1.9714e-14 1.2443e-15 60
// 28 16.4771 1.7148e-14 1.0407e-15 60
// 29 16.9909 1.7309e-14 1.0187e-15 60
// 30 17.4456 2.1453e-14 1.2297e-15 64
// 31 17.9909 2.2069e-14 1.2267e-15 68
//
// The eigenvalues and |E|/|A| values were compared to those generated by
// Mathematica Version 9.0; Wolfram Research, Inc., Champaign IL, 2012.
// The results were all comparable with eigenvalues agreeing to a large
// number of decimal places.
//
// Timing on an Intel (R) Core (TM) i7-3930K CPU @ 3.20 GHZ (in seconds):
//
// N |E|/|A| iters tridiag QR evecs evec[N] comperr
// --------------------------------------------------------------
// 512 4.4149e-15 1017 0.180 0.005 1.151 0.848 2.166
// 1024 6.1691e-15 1990 1.775 0.031 11.894 12.759 21.179
// 2048 8.5108e-15 3849 16.592 0.107 119.744 116.56 212.227
//
// where iters is the number of QR steps taken, tridiag is the computation
// of the Householder reflection vectors, evecs is the composition of
// Householder reflections and Givens rotations to obtain the matrix of
// eigenvectors, evec[N] is N calls to get the eigenvectors separately, and
// comperr is the computation E = Q^T*A*Q - D. The construction of the full
// eigenvector matrix is, of course, quite expensive. If you need only a
// small number of eigenvectors, use function GetEigenvector(int,Real*).
namespace gte
{
template <typename Real>
class SymmetricEigensolver
{
public:
// The solver processes NxN symmetric matrices, where N > 1 ('size'
// is N) and the matrix is stored in row-major order. The maximum
// number of iterations ('maxIterations') must be specified for the
// reduction of a tridiagonal matrix to a diagonal matrix. The goal
// is to compute NxN orthogonal Q and NxN diagonal D for which
// Q^T*A*Q = D.
SymmetricEigensolver(int size, unsigned int maxIterations)
:
mSize(0),
mMaxIterations(0),
mEigenvectorMatrixType(-1)
{
if (size > 1 && maxIterations > 0)
{
mSize = size;
mMaxIterations = maxIterations;
mMatrix.resize(size * size);
mDiagonal.resize(size);
mSuperdiagonal.resize(size - 1);
mGivens.reserve(maxIterations * (size - 1));
mPermutation.resize(size);
mVisited.resize(size);
mPVector.resize(size);
mVVector.resize(size);
mWVector.resize(size);
}
}
// A copy of the NxN symmetric input is made internally. The order of
// the eigenvalues is specified by sortType: -1 (decreasing), 0 (no
// sorting), or +1 (increasing). When sorted, the eigenvectors are
// ordered accordingly. The return value is the number of iterations
// consumed when convergence occurred, 0xFFFFFFFF when convergence did
// not occur, or 0 when N <= 1 was passed to the constructor.
unsigned int Solve(Real const* input, int sortType)
{
mEigenvectorMatrixType = -1;
if (mSize > 0)
{
std::copy(input, input + mSize * mSize, mMatrix.begin());
Tridiagonalize();
mGivens.clear();
for (unsigned int j = 0; j < mMaxIterations; ++j)
{
int imin = -1, imax = -1;
for (int i = mSize - 2; i >= 0; --i)
{
// When a01 is much smaller than its diagonal
// neighbors, it is effectively zero.
Real a00 = mDiagonal[i];
Real a01 = mSuperdiagonal[i];
Real a11 = mDiagonal[i + 1];
Real sum = std::fabs(a00) + std::fabs(a11);
if (sum + std::fabs(a01) != sum)
{
if (imax == -1)
{
imax = i;
}
imin = i;
}
else
{
// The superdiagonal term is effectively zero
// compared to the neighboring diagonal terms.
if (imin >= 0)
{
break;
}
}
}
if (imax == -1)
{
// The algorithm has converged.
ComputePermutation(sortType);
return j;
}
// Process the lower-right-most unreduced tridiagonal
// block.
DoQRImplicitShift(imin, imax);
}
return 0xFFFFFFFF;
}
else
{
return 0;
}
}
// Get the eigenvalues of the matrix passed to Solve(...). The input
// 'eigenvalues' must have N elements.
void GetEigenvalues(Real* eigenvalues) const
{
if (eigenvalues && mSize > 0)
{
if (mPermutation[0] >= 0)
{
// Sorting was requested.
for (int i = 0; i < mSize; ++i)
{
int p = mPermutation[i];
eigenvalues[i] = mDiagonal[p];
}
}
else
{
// Sorting was not requested.
size_t numBytes = mSize * sizeof(Real);
std::memcpy(eigenvalues, &mDiagonal[0], numBytes);
}
}
}
// Accumulate the Householder reflections and Givens rotations to
// produce the orthogonal matrix Q for which Q^T*A*Q = D. The input
// 'eigenvectors' must have N*N elements. The array is filled in as
// if the eigenvector matrix is stored in row-major order. The i-th
// eigenvector is
// (eigenvectors[i+size*0], ... eigenvectors[i+size*(size - 1)])
// which is the i-th column of 'eigenvectors' as an NxN matrix stored
// in row-major order.
void GetEigenvectors(Real* eigenvectors) const
{
mEigenvectorMatrixType = -1;
if (eigenvectors && mSize > 0)
{
// Start with the identity matrix.
std::fill(eigenvectors, eigenvectors + mSize * mSize, (Real)0);
for (int d = 0; d < mSize; ++d)
{
eigenvectors[d + mSize * d] = (Real)1;
}
// Multiply the Householder reflections using backward
// accumulation.
int r, c;
for (int i = mSize - 3, rmin = i + 1; i >= 0; --i, --rmin)
{
// Copy the v vector and 2/Dot(v,v) from the matrix.
Real const* column = &mMatrix[i];
Real twoinvvdv = column[mSize * (i + 1)];
for (r = 0; r < i + 1; ++r)
{
mVVector[r] = (Real)0;
}
mVVector[r] = (Real)1;
for (++r; r < mSize; ++r)
{
mVVector[r] = column[mSize * r];
}
// Compute the w vector.
for (r = 0; r < mSize; ++r)
{
mWVector[r] = (Real)0;
for (c = rmin; c < mSize; ++c)
{
mWVector[r] += mVVector[c] * eigenvectors[r + mSize * c];
}
mWVector[r] *= twoinvvdv;
}
// Update the matrix, Q <- Q - v*w^T.
for (r = rmin; r < mSize; ++r)
{
for (c = 0; c < mSize; ++c)
{
eigenvectors[c + mSize * r] -= mVVector[r] * mWVector[c];
}
}
}
// Multiply the Givens rotations.
for (auto const& givens : mGivens)
{
for (r = 0; r < mSize; ++r)
{
int j = givens.index + mSize * r;
Real& q0 = eigenvectors[j];
Real& q1 = eigenvectors[j + 1];
Real prd0 = givens.cs * q0 - givens.sn * q1;
Real prd1 = givens.sn * q0 + givens.cs * q1;
q0 = prd0;
q1 = prd1;
}
}
// The number of Householder reflections is H = mSize - 2. If
// H is even, the product of Householder reflections is a
// rotation; otherwise, H is odd and the product is a
// reflection. The number of Givens rotations does not
// influence the type of the product of Householder
// reflections.
mEigenvectorMatrixType = 1 - (mSize & 1);
if (mPermutation[0] >= 0)
{
// Sorting was requested.
std::fill(mVisited.begin(), mVisited.end(), 0);
for (int i = 0; i < mSize; ++i)
{
if (mVisited[i] == 0 && mPermutation[i] != i)
{
// The item starts a cycle with 2 or more
// elements.
int start = i, current = i, j, next;
for (j = 0; j < mSize; ++j)
{
mPVector[j] = eigenvectors[i + mSize * j];
}
while ((next = mPermutation[current]) != start)
{
mEigenvectorMatrixType = 1 - mEigenvectorMatrixType;
mVisited[current] = 1;
for (j = 0; j < mSize; ++j)
{
eigenvectors[current + mSize * j] =
eigenvectors[next + mSize * j];
}
current = next;
}
mVisited[current] = 1;
for (j = 0; j < mSize; ++j)
{
eigenvectors[current + mSize * j] = mPVector[j];
}
}
}
}
}
}
// The eigenvector matrix is a rotation (return +1) or a reflection
// (return 0). If the input 'size' to the constructor is 0 or the
// input 'eigenvectors' to GetEigenvectors is null, the returned value
// is -1.
inline int GetEigenvectorMatrixType() const
{
return mEigenvectorMatrixType;
}
// Compute a single eigenvector, which amounts to computing column c
// of matrix Q. The reflections and rotations are applied
// incrementally. This is useful when you want only a small number of
// the eigenvectors.
void GetEigenvector(int c, Real* eigenvector) const
{
if (0 <= c && c < mSize)
{
// y = H*x, then x and y are swapped for the next H
Real* x = eigenvector;
Real* y = &mPVector[0];
// Start with the Euclidean basis vector.
std::memset(x, 0, mSize * sizeof(Real));
if (mPermutation[0] >= 0)
{
// Sorting was requested.
x[mPermutation[c]] = (Real)1;
}
else
{
x[c] = (Real)1;
}
// Apply the Givens rotations.
for (auto const& givens : gte::reverse(mGivens))
{
Real& xr = x[givens.index];
Real& xrp1 = x[givens.index + 1];
Real tmp0 = givens.cs * xr + givens.sn * xrp1;
Real tmp1 = -givens.sn * xr + givens.cs * xrp1;
xr = tmp0;
xrp1 = tmp1;
}
// Apply the Householder reflections.
for (int i = mSize - 3; i >= 0; --i)
{
// Get the Householder vector v.
Real const* column = &mMatrix[i];
Real twoinvvdv = column[mSize * (i + 1)];
int r;
for (r = 0; r < i + 1; ++r)
{
y[r] = x[r];
}
// Compute s = Dot(x,v) * 2/v^T*v.
Real s = x[r]; // r = i+1, v[i+1] = 1
for (int j = r + 1; j < mSize; ++j)
{
s += x[j] * column[mSize * j];
}
s *= twoinvvdv;
y[r] = x[r] - s; // v[i+1] = 1
// Compute the remaining components of y.
for (++r; r < mSize; ++r)
{
y[r] = x[r] - s * column[mSize * r];
}
std::swap(x, y);
}
// The final product is stored in x.
if (x != eigenvector)
{
size_t numBytes = mSize * sizeof(Real);
std::memcpy(eigenvector, x, numBytes);
}
}
}
Real GetEigenvalue(int c) const
{
if (mSize > 0)
{
if (mPermutation[0] >= 0)
{
// Sorting was requested.
return mDiagonal[mPermutation[c]];
}
else
{
// Sorting was not requested.
return mDiagonal[c];
}
}
else
{
return std::numeric_limits<Real>::max();
}
}
private:
// Tridiagonalize using Householder reflections. On input, mMatrix is
// a copy of the input matrix. On output, the upper-triangular part
// of mMatrix including the diagonal stores the tridiagonalization.
// The lower-triangular part contains 2/Dot(v,v) that are used in
// computing eigenvectors and the part below the subdiagonal stores
// the essential parts of the Householder vectors v (the elements of
// v after the leading 1-valued component).
void Tridiagonalize()
{
int r, c;
for (int i = 0, ip1 = 1; i < mSize - 2; ++i, ++ip1)
{
// Compute the Householder vector. Read the initial vector
// from the row of the matrix.
Real length = (Real)0;
for (r = 0; r < ip1; ++r)
{
mVVector[r] = (Real)0;
}
for (r = ip1; r < mSize; ++r)
{
Real vr = mMatrix[r + mSize * i];
mVVector[r] = vr;
length += vr * vr;
}
Real vdv = (Real)1;
length = std::sqrt(length);
if (length > (Real)0)
{
Real& v1 = mVVector[ip1];
Real sgn = (v1 >= (Real)0 ? (Real)1 : (Real)-1);
Real invDenom = ((Real)1) / (v1 + sgn * length);
v1 = (Real)1;
for (r = ip1 + 1; r < mSize; ++r)
{
Real& vr = mVVector[r];
vr *= invDenom;
vdv += vr * vr;
}
}
// Compute the rank-1 offsets v*w^T and w*v^T.
Real invvdv = (Real)1 / vdv;
Real twoinvvdv = invvdv * (Real)2;
Real pdvtvdv = (Real)0;
for (r = i; r < mSize; ++r)
{
mPVector[r] = (Real)0;
for (c = i; c < r; ++c)
{
mPVector[r] += mMatrix[r + mSize * c] * mVVector[c];
}
for (/**/; c < mSize; ++c)
{
mPVector[r] += mMatrix[c + mSize * r] * mVVector[c];
}
mPVector[r] *= twoinvvdv;
pdvtvdv += mPVector[r] * mVVector[r];
}
pdvtvdv *= invvdv;
for (r = i; r < mSize; ++r)
{
mWVector[r] = mPVector[r] - pdvtvdv * mVVector[r];
}
// Update the input matrix.
for (r = i; r < mSize; ++r)
{
Real vr = mVVector[r];
Real wr = mWVector[r];
Real offset = vr * wr * (Real)2;
mMatrix[r + mSize * r] -= offset;
for (c = r + 1; c < mSize; ++c)
{
offset = vr * mWVector[c] + wr * mVVector[c];
mMatrix[c + mSize * r] -= offset;
}
}
// Copy the vector to column i of the matrix. The 0-valued
// components at indices 0 through i are not stored. The
// 1-valued component at index i+1 is also not stored;
// instead, the quantity 2/Dot(v,v) is stored for use in
// eigenvector construction. That construction must take
// into account the implied components that are not stored.
mMatrix[i + mSize * ip1] = twoinvvdv;
for (r = ip1 + 1; r < mSize; ++r)
{
mMatrix[i + mSize * r] = mVVector[r];
}
}
// Copy the diagonal and subdiagonal entries for cache coherence
// in the QR iterations.
int k, ksup = mSize - 1, index = 0, delta = mSize + 1;
for (k = 0; k < ksup; ++k, index += delta)
{
mDiagonal[k] = mMatrix[index];
mSuperdiagonal[k] = mMatrix[index + 1];
}
mDiagonal[k] = mMatrix[index];
}
// A helper for generating Givens rotation sine and cosine robustly.
void GetSinCos(Real x, Real y, Real& cs, Real& sn)
{
// Solves sn*x + cs*y = 0 robustly.
Real tau;
if (y != (Real)0)
{
if (std::fabs(y) > std::fabs(x))
{
tau = -x / y;
sn = (Real)1 / std::sqrt((Real)1 + tau * tau);
cs = sn * tau;
}
else
{
tau = -y / x;
cs = (Real)1 / std::sqrt((Real)1 + tau * tau);
sn = cs * tau;
}
}
else
{
cs = (Real)1;
sn = (Real)0;
}
}
// The QR step with implicit shift. Generally, the initial T is
// unreduced tridiagonal (all subdiagonal entries are nonzero). If a
// QR step causes a superdiagonal entry to become zero, the matrix
// decouples into a block diagonal matrix with two tridiagonal blocks.
// These blocks can be reduced independently of each other, which
// allows for parallelization of the algorithm. The inputs imin and
// imax identify the subblock of T to be processed. That block has
// upper-left element T(imin,imin) and lower-right element
// T(imax,imax).
void DoQRImplicitShift(int imin, int imax)
{
// The implicit shift. Compute the eigenvalue u of the
// lower-right 2x2 block that is closer to a11.
Real a00 = mDiagonal[imax];
Real a01 = mSuperdiagonal[imax];
Real a11 = mDiagonal[imax + 1];
Real dif = (a00 - a11) * (Real)0.5;
Real sgn = (dif >= (Real)0 ? (Real)1 : (Real)-1);
Real a01sqr = a01 * a01;
Real u = a11 - a01sqr / (dif + sgn * std::sqrt(dif * dif + a01sqr));
Real x = mDiagonal[imin] - u;
Real y = mSuperdiagonal[imin];
Real a12, a22, a23, tmp11, tmp12, tmp21, tmp22, cs, sn;
Real a02 = (Real)0;
int i0 = imin - 1, i1 = imin, i2 = imin + 1;
for (/**/; i1 <= imax; ++i0, ++i1, ++i2)
{
// Compute the Givens rotation and save it for use in
// computing the eigenvectors.
GetSinCos(x, y, cs, sn);
mGivens.push_back(GivensRotation(i1, cs, sn));
// Update the tridiagonal matrix. This amounts to updating a
// 4x4 subblock,
// b00 b01 b02 b03
// b01 b11 b12 b13
// b02 b12 b22 b23
// b03 b13 b23 b33
// The four corners (b00, b03, b33) do not change values. The
// The interior block {{b11,b12},{b12,b22}} is updated on each
// pass. For the first pass, the b0c values are out of range,
// so only the values (b13, b23) change. For the last pass,
// the br3 values are out of range, so only the values
// (b01, b02) change. For passes between first and last, the
// values (b01, b02, b13, b23) change.
if (i1 > imin)
{
mSuperdiagonal[i0] = cs * mSuperdiagonal[i0] - sn * a02;
}
a11 = mDiagonal[i1];
a12 = mSuperdiagonal[i1];
a22 = mDiagonal[i2];
tmp11 = cs * a11 - sn * a12;
tmp12 = cs * a12 - sn * a22;
tmp21 = sn * a11 + cs * a12;
tmp22 = sn * a12 + cs * a22;
mDiagonal[i1] = cs * tmp11 - sn * tmp12;
mSuperdiagonal[i1] = sn * tmp11 + cs * tmp12;
mDiagonal[i2] = sn * tmp21 + cs * tmp22;
if (i1 < imax)
{
a23 = mSuperdiagonal[i2];
a02 = -sn * a23;
mSuperdiagonal[i2] = cs * a23;
// Update the parameters for the next Givens rotation.
x = mSuperdiagonal[i1];
y = a02;
}
}
}
// Sort the eigenvalues and compute the corresponding permutation of
// the indices of the array storing the eigenvalues. The permutation
// is used for reordering the eigenvalues and eigenvectors in the
// calls to GetEigenvalues(...) and GetEigenvectors(...).
void ComputePermutation(int sortType)
{
// The number of Householder reflections is H = mSize - 2. If H
// is even, the product of Householder reflections is a rotation;
// otherwise, H is odd and the product is a reflection. The
// number of Givens rotations does not influence the type of the
// product of Householder reflections.
mEigenvectorMatrixType = 1 - (mSize & 1);
if (sortType == 0)
{
// Set a flag for GetEigenvalues() and GetEigenvectors() to
// know that sorted output was not requested.
mPermutation[0] = -1;
return;
}
// Compute the permutation induced by sorting. Initially, we
// start with the identity permutation I = (0,1,...,N-1).
struct SortItem
{
Real eigenvalue;
int index;
};
std::vector<SortItem> items(mSize);
int i;
for (i = 0; i < mSize; ++i)
{
items[i].eigenvalue = mDiagonal[i];
items[i].index = i;
}
if (sortType > 0)
{
std::sort(items.begin(), items.end(),
[](SortItem const& item0, SortItem const& item1)
{
return item0.eigenvalue < item1.eigenvalue;
}
);
}
else
{
std::sort(items.begin(), items.end(),
[](SortItem const& item0, SortItem const& item1)
{
return item0.eigenvalue > item1.eigenvalue;
}
);
}
i = 0;
for (auto const& item : items)
{
mPermutation[i++] = item.index;
}
// GetEigenvectors() has nontrivial code for computing the
// orthogonal Q from the reflections and rotations. To avoid
// complicating the code further when sorting is requested, Q is
// computed as in the unsorted case. We then need to swap columns
// of Q to be consistent with the sorting of the eigenvalues. To
// minimize copying due to column swaps, we use permutation P.
// The minimum number of transpositions to obtain P from I is N
// minus the number of cycles of P. Each cycle is reordered with
// a minimum number of transpositions; that is, the eigenitems are
// cyclically swapped, leading to a minimum amount of copying.
// For/ example, if there is a cycle i0 -> i1 -> i2 -> i3, then
// the copying is
// save = eigenitem[i0];
// eigenitem[i1] = eigenitem[i2];
// eigenitem[i2] = eigenitem[i3];
// eigenitem[i3] = save;
}
// The number N of rows and columns of the matrices to be processed.
int mSize;
// The maximum number of iterations for reducing the tridiagonal
// matrix to a diagonal matrix.
unsigned int mMaxIterations;
// The internal copy of a matrix passed to the solver. See the
// comments about function Tridiagonalize() about what is stored in
// the matrix.
std::vector<Real> mMatrix; // NxN elements
// After the initial tridiagonalization by Householder reflections, we
// no longer need the full mMatrix. Copy the diagonal and
// superdiagonal entries to linear arrays in order to be cache
// friendly.
std::vector<Real> mDiagonal; // N elements
std::vector<Real> mSuperdiagonal; // N-1 elements
// The Givens rotations used to reduce the initial tridiagonal matrix
// to a diagonal matrix. A rotation is the identity with the
// following replacement entries: R(index,index) = cs,
// R(index,index+1) = sn, R(index+1,index) = -sn and
// R(index+1,index+1) = cs. If N is the matrix size and K is the
// maximum number of iterations, the maximum number of Givens
// rotations is K*(N-1). The maximum amount of memory is allocated
// to store these.
struct GivensRotation
{
// No default initialization for fast creation of std::vector
// of objects of this type.
GivensRotation() = default;
GivensRotation(int inIndex, Real inCs, Real inSn)
:
index(inIndex),
cs(inCs),
sn(inSn)
{
}
int index;
Real cs, sn;
};
std::vector<GivensRotation> mGivens; // K*(N-1) elements
// When sorting is requested, the permutation associated with the sort
// is stored in mPermutation. When sorting is not requested,
// mPermutation[0] is set to -1. mVisited is used for finding cycles
// in the permutation. mEigenvectorMatrixType is +1 if GetEigenvectors
// returns a rotation matrix, 0 if GetEigenvectors returns a
// reflection matrix or -1 if an input to the constructor or to
// GetEigenvectors is invalid.
std::vector<int> mPermutation; // N elements
mutable std::vector<int> mVisited; // N elements
mutable int mEigenvectorMatrixType;
// Temporary storage to compute Householder reflections and to
// support sorting of eigenvectors.
mutable std::vector<Real> mPVector; // N elements
mutable std::vector<Real> mVVector; // N elements
mutable std::vector<Real> mWVector; // N elements
};
}