|
|
@ -4,23 +4,23 @@ train{ |
|
|
|
fileprefix_list = [ |
|
|
|
broken_bullet_50k, # more input models can be added here |
|
|
|
] |
|
|
|
d_in = 3 |
|
|
|
plot_frequency = 5000 |
|
|
|
d_in = 3 # 输入数据的维度。在3D点云数据中,通常为3(x、y、z坐标) |
|
|
|
plot_frequency = 5000 # 每5000次迭代绘制一次点云 |
|
|
|
checkpoint_frequency = 5000 |
|
|
|
status_frequency = 100 |
|
|
|
weight_decay = 0 |
|
|
|
learning_rate_schedule = [{ |
|
|
|
"Type" : "Step", |
|
|
|
"Type" : "Step", # 学习率调度类型。"Step"表示在指定迭代次数后将学习率乘以因子 |
|
|
|
"Initial" : 0.005, |
|
|
|
"Interval" : 2000, |
|
|
|
"Factor" : 0.5 |
|
|
|
}] |
|
|
|
network_class = model.network.NHRepNet |
|
|
|
network_class = model.network.NHRepNet # 网络类型。NHRepNet是neural halfspace representation network的缩写 |
|
|
|
} |
|
|
|
|
|
|
|
plot{ |
|
|
|
resolution = 128 |
|
|
|
mc_value = 0.0 |
|
|
|
resolution = 128 # 体素网格的分辨率。128表示体素网格的每个维度有128个单元格 |
|
|
|
mc_value = 0.0 # 体素网格的体素值。0.0表示体素网格的体素值为0 |
|
|
|
is_uniform_grid = True |
|
|
|
verbose = False |
|
|
|
save_html = False |
|
|
@ -29,20 +29,20 @@ plot{ |
|
|
|
} |
|
|
|
network{ |
|
|
|
inputs{ |
|
|
|
dims_sdf = [256, 256, 256] |
|
|
|
skip_in = [] |
|
|
|
geometric_init= True |
|
|
|
radius_init = 1 |
|
|
|
beta=100 |
|
|
|
dims_sdf = [256, 256, 256] # 体素网格的维度。[256, 256, 256]表示体素网格的每个维度有256个单元格 |
|
|
|
skip_in = [] # 跳过输入的索引。[]表示不跳过任何输入 |
|
|
|
geometric_init= True # 几何初始化。True表示使用几何初始化 |
|
|
|
radius_init = 1 # 半径初始化。1表示半径初始化为1 |
|
|
|
beta=100 # beta值。100表示beta值为100 |
|
|
|
} |
|
|
|
sampler{ |
|
|
|
sampler_type = NormalPerPoint |
|
|
|
sampler_type = NormalPerPoint # 采样器类型。NormalPerPoint表示每个点都使用正态分布采样 |
|
|
|
properties{ |
|
|
|
global_sigma = 1.8 |
|
|
|
global_sigma = 1.8 # 全局sigma值。1.8表示全局sigma值为1.8 |
|
|
|
} |
|
|
|
} |
|
|
|
loss{ |
|
|
|
lambda = 1 |
|
|
|
normals_lambda = 1 |
|
|
|
lambda = 1 # 损失函数中的lambda值。1表示lambda值为1 |
|
|
|
normals_lambda = 1 # 损失函数中的normals_lambda值。1表示normals_lambda值为1 |
|
|
|
} |
|
|
|
} |
|
|
|