You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

346 lines
13 KiB

3 months ago
// David Eberly, Geometric Tools, Redmond WA 98052
// Copyright (c) 1998-2021
// Distributed under the Boost Software License, Version 1.0.
// https://www.boost.org/LICENSE_1_0.txt
// https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
// Version: 4.0.2019.08.13
#pragma once
#include <Mathematics/FIQuery.h>
#include <Mathematics/TIQuery.h>
#include <Mathematics/Cone.h>
#include <Mathematics/Hypersphere.h>
#include <Mathematics/Vector3.h>
// The test-intersection query is based on the document
// https://www.geometrictools.com/Documentation/IntersectionSphereCone.pdf
//
// The find-intersection returns a single point in the set of intersection
// when that intersection is not empty.
namespace gte
{
template <typename Real>
class TIQuery<Real, Sphere3<Real>, Cone3<Real>>
{
public:
struct Result
{
bool intersect;
};
Result operator()(Sphere3<Real> const& sphere, Cone3<Real> const& cone)
{
Result result;
if (cone.GetMinHeight() > (Real)0)
{
if (cone.IsFinite())
{
result.intersect = DoQueryConeFrustum(sphere, cone);
}
else
{
result.intersect = DoQueryInfiniteTruncatedCone(sphere, cone);
}
}
else
{
if (cone.IsFinite())
{
result.intersect = DoQueryFiniteCone(sphere, cone);
}
else
{
result.intersect = DoQueryInfiniteCone(sphere, cone);
}
}
return result;
}
private:
bool DoQueryInfiniteCone(Sphere3<Real> const& sphere, Cone3<Real> const& cone)
{
Vector3<Real> U = cone.ray.origin - (sphere.radius * cone.invSinAngle) * cone.ray.direction;
Vector3<Real> CmU = sphere.center - U;
Real AdCmU = Dot(cone.ray.direction, CmU);
if (AdCmU > (Real)0)
{
Real sqrLengthCmU = Dot(CmU, CmU);
if (AdCmU * AdCmU >= sqrLengthCmU * cone.cosAngleSqr)
{
Vector3<Real> CmV = sphere.center - cone.ray.origin;
Real AdCmV = Dot(cone.ray.direction, CmV);
if (AdCmV < -sphere.radius)
{
return false;
}
Real rSinAngle = sphere.radius * cone.sinAngle;
if (AdCmV >= -rSinAngle)
{
return true;
}
Real sqrLengthCmV = Dot(CmV, CmV);
return sqrLengthCmV <= sphere.radius * sphere.radius;
}
}
return false;
}
bool DoQueryInfiniteTruncatedCone(Sphere3<Real> const& sphere, Cone3<Real> const& cone)
{
Vector3<Real> U = cone.ray.origin - (sphere.radius * cone.invSinAngle) * cone.ray.direction;
Vector3<Real> CmU = sphere.center - U;
Real AdCmU = Dot(cone.ray.direction, CmU);
if (AdCmU > (Real)0)
{
Real sqrLengthCmU = Dot(CmU, CmU);
if (AdCmU * AdCmU >= sqrLengthCmU * cone.cosAngleSqr)
{
Vector3<Real> CmV = sphere.center - cone.ray.origin;
Real AdCmV = Dot(cone.ray.direction, CmV);
Real minHeight = cone.GetMinHeight();
if (AdCmV < minHeight - sphere.radius)
{
return false;
}
Real rSinAngle = sphere.radius * cone.sinAngle;
if (AdCmV >= -rSinAngle)
{
return true;
}
Vector3<Real> D = CmV - minHeight * cone.ray.direction;
Real lengthAxD = Length(Cross(cone.ray.direction, D));
Real hminTanAngle = minHeight * cone.tanAngle;
if (lengthAxD <= hminTanAngle)
{
return true;
}
Real AdD = AdCmV - minHeight;
Real diff = lengthAxD - hminTanAngle;
Real sqrLengthCmK = AdD * AdD + diff * diff;
return sqrLengthCmK <= sphere.radius * sphere.radius;
}
}
return false;
}
bool DoQueryFiniteCone(Sphere3<Real> const& sphere, Cone3<Real> const& cone)
{
Vector3<Real> U = cone.ray.origin - (sphere.radius * cone.invSinAngle) * cone.ray.direction;
Vector3<Real> CmU = sphere.center - U;
Real AdCmU = Dot(cone.ray.direction, CmU);
if (AdCmU > (Real)0)
{
Real sqrLengthCmU = Dot(CmU, CmU);
if (AdCmU * AdCmU >= sqrLengthCmU * cone.cosAngleSqr)
{
Vector3<Real> CmV = sphere.center - cone.ray.origin;
Real AdCmV = Dot(cone.ray.direction, CmV);
if (AdCmV < -sphere.radius)
{
return false;
}
Real maxHeight = cone.GetMaxHeight();
if (AdCmV > cone.GetMaxHeight() + sphere.radius)
{
return false;
}
Real rSinAngle = sphere.radius * cone.sinAngle;
if (AdCmV >= -rSinAngle)
{
if (AdCmV <= maxHeight - rSinAngle)
{
return true;
}
else
{
Vector3<Real> barD = CmV - maxHeight * cone.ray.direction;
Real lengthAxBarD = Length(Cross(cone.ray.direction, barD));
Real hmaxTanAngle = maxHeight * cone.tanAngle;
if (lengthAxBarD <= hmaxTanAngle)
{
return true;
}
Real AdBarD = AdCmV - maxHeight;
Real diff = lengthAxBarD - hmaxTanAngle;
Real sqrLengthCmBarK = AdBarD * AdBarD + diff * diff;
return sqrLengthCmBarK <= sphere.radius * sphere.radius;
}
}
else
{
Real sqrLengthCmV = Dot(CmV, CmV);
return sqrLengthCmV <= sphere.radius * sphere.radius;
}
}
}
return false;
}
bool DoQueryConeFrustum(Sphere3<Real> const& sphere, Cone3<Real> const& cone)
{
Vector3<Real> U = cone.ray.origin - (sphere.radius * cone.invSinAngle) * cone.ray.direction;
Vector3<Real> CmU = sphere.center - U;
Real AdCmU = Dot(cone.ray.direction, CmU);
if (AdCmU > (Real)0)
{
Real sqrLengthCmU = Dot(CmU, CmU);
if (AdCmU * AdCmU >= sqrLengthCmU * cone.cosAngleSqr)
{
Vector3<Real> CmV = sphere.center - cone.ray.origin;
Real AdCmV = Dot(cone.ray.direction, CmV);
Real minHeight = cone.GetMinHeight();
if (AdCmV < minHeight - sphere.radius)
{
return false;
}
Real maxHeight = cone.GetMaxHeight();
if (AdCmV > maxHeight + sphere.radius)
{
return false;
}
Real rSinAngle = sphere.radius * cone.sinAngle;
if (AdCmV >= minHeight - rSinAngle)
{
if (AdCmV <= maxHeight - rSinAngle)
{
return true;
}
else
{
Vector3<Real> barD = CmV - maxHeight * cone.ray.direction;
Real lengthAxBarD = Length(Cross(cone.ray.direction, barD));
Real hmaxTanAngle = maxHeight * cone.tanAngle;
if (lengthAxBarD <= hmaxTanAngle)
{
return true;
}
Real AdBarD = AdCmV - maxHeight;
Real diff = lengthAxBarD - hmaxTanAngle;
Real sqrLengthCmBarK = AdBarD * AdBarD + diff * diff;
return sqrLengthCmBarK <= sphere.radius * sphere.radius;
}
}
else
{
Vector3<Real> D = CmV - minHeight * cone.ray.direction;
Real lengthAxD = Length(Cross(cone.ray.direction, D));
Real hminTanAngle = minHeight * cone.tanAngle;
if (lengthAxD <= hminTanAngle)
{
return true;
}
Real AdD = AdCmV - minHeight;
Real diff = lengthAxD - hminTanAngle;
Real sqrLengthCmK = AdD * AdD + diff * diff;
return sqrLengthCmK <= sphere.radius * sphere.radius;
}
}
}
return false;
}
};
template <typename Real>
class FIQuery<Real, Sphere3<Real>, Cone3<Real>>
{
public:
struct Result
{
// If an intersection occurs, it is potentially an infinite set.
// If the cone vertex is inside the sphere, 'point' is set to the
// cone vertex. If the sphere center is inside the cone, 'point'
// is set to the sphere center. Otherwise, 'point' is set to the
// cone point that is closest to the cone vertex and inside the
// sphere.
bool intersect;
Vector3<Real> point;
};
Result operator()(Sphere3<Real> const& sphere, Cone3<Real> const& cone)
{
Result result;
// Test whether the cone vertex is inside the sphere.
Vector3<Real> diff = sphere.center - cone.ray.origin;
Real rSqr = sphere.radius * sphere.radius;
Real lenSqr = Dot(diff, diff);
if (lenSqr <= rSqr)
{
// The cone vertex is inside the sphere, so the sphere and
// cone intersect.
result.intersect = true;
result.point = cone.ray.origin;
return result;
}
// Test whether the sphere center is inside the cone.
Real dot = Dot(diff, cone.ray.direction);
Real dotSqr = dot * dot;
if (dotSqr >= lenSqr * cone.cosAngleSqr && dot > (Real)0)
{
// The sphere center is inside cone, so the sphere and cone
// intersect.
result.intersect = true;
result.point = sphere.center;
return result;
}
// The sphere center is outside the cone. The problem now reduces
// to computing an intersection between the circle and the ray in
// the plane containing the cone vertex and spanned by the cone
// axis and vector from the cone vertex to the sphere center.
// The ray is parameterized by t * D + V with t >= 0, |D| = 1 and
// dot(A,D) = cos(angle). Also, D = e * A + f * (C - V).
// Substituting the ray equation into the sphere equation yields
// R^2 = |t * D + V - C|^2, so the quadratic for intersections is
// t^2 - 2 * dot(D, C - V) * t + |C - V|^2 - R^2 = 0. An
// intersection occurs if and only if the discriminant is
// nonnegative. This test becomes
// dot(D, C - V)^2 >= dot(C - V, C - V) - R^2
// Note that if the right-hand side is nonpositive, then the
// inequality is true (the sphere contains V). This is already
// ruled out in the first block of code in this function.
Real uLen = std::sqrt(std::max(lenSqr - dotSqr, (Real)0));
Real test = cone.cosAngle * dot + cone.sinAngle * uLen;
Real discr = test * test - lenSqr + rSqr;
if (discr >= (Real)0 && test >= (Real)0)
{
// Compute the point of intersection closest to the cone
// vertex.
result.intersect = true;
Real t = test - std::sqrt(std::max(discr, (Real)0));
Vector3<Real> B = diff - dot * cone.ray.direction;
Real tmp = cone.sinAngle / uLen;
result.point = t * (cone.cosAngle * cone.ray.direction + tmp * B);
}
else
{
result.intersect = false;
}
return result;
}
};
}