You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

359 lines
14 KiB

3 months ago
// David Eberly, Geometric Tools, Redmond WA 98052
// Copyright (c) 1998-2021
// Distributed under the Boost Software License, Version 1.0.
// https://www.boost.org/LICENSE_1_0.txt
// https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
// Version: 4.0.2020.01.10
#pragma once
#include <Mathematics/Vector.h>
namespace gte
{
// Template alias for convenience.
template <typename Real>
using Vector3 = Vector<3, Real>;
// Cross, UnitCross, and DotCross have a template parameter N that should
// be 3 or 4. The latter case supports affine vectors in 4D (last
// component w = 0) when you want to use 4-tuples and 4x4 matrices for
// affine algebra.
// Compute the cross product using the formal determinant:
// cross = det{{e0,e1,e2},{x0,x1,x2},{y0,y1,y2}}
// = (x1*y2-x2*y1, x2*y0-x0*y2, x0*y1-x1*y0)
// where e0 = (1,0,0), e1 = (0,1,0), e2 = (0,0,1), v0 = (x0,x1,x2), and
// v1 = (y0,y1,y2).
template <int N, typename Real>
Vector<N, Real> Cross(Vector<N, Real> const& v0, Vector<N, Real> const& v1)
{
static_assert(N == 3 || N == 4, "Dimension must be 3 or 4.");
Vector<N, Real> result;
result.MakeZero();
result[0] = v0[1] * v1[2] - v0[2] * v1[1];
result[1] = v0[2] * v1[0] - v0[0] * v1[2];
result[2] = v0[0] * v1[1] - v0[1] * v1[0];
return result;
}
// Compute the normalized cross product.
template <int N, typename Real>
Vector<N, Real> UnitCross(Vector<N, Real> const& v0, Vector<N, Real> const& v1, bool robust = false)
{
static_assert(N == 3 || N == 4, "Dimension must be 3 or 4.");
Vector<N, Real> unitCross = Cross(v0, v1);
Normalize(unitCross, robust);
return unitCross;
}
// Compute Dot((x0,x1,x2),Cross((y0,y1,y2),(z0,z1,z2)), the triple scalar
// product of three vectors, where v0 = (x0,x1,x2), v1 = (y0,y1,y2), and
// v2 is (z0,z1,z2).
template <int N, typename Real>
Real DotCross(Vector<N, Real> const& v0, Vector<N, Real> const& v1,
Vector<N, Real> const& v2)
{
static_assert(N == 3 || N == 4, "Dimension must be 3 or 4.");
return Dot(v0, Cross(v1, v2));
}
// Compute a right-handed orthonormal basis for the orthogonal complement
// of the input vectors. The function returns the smallest length of the
// unnormalized vectors computed during the process. If this value is
// nearly zero, it is possible that the inputs are linearly dependent
// (within numerical round-off errors). On input, numInputs must be 1 or
// 2 and v[0] through v[numInputs-1] must be initialized. On output, the
// vectors v[0] through v[2] form an orthonormal set.
template <typename Real>
Real ComputeOrthogonalComplement(int numInputs, Vector3<Real>* v, bool robust = false)
{
if (numInputs == 1)
{
if (std::fabs(v[0][0]) > std::fabs(v[0][1]))
{
v[1] = { -v[0][2], (Real)0, +v[0][0] };
}
else
{
v[1] = { (Real)0, +v[0][2], -v[0][1] };
}
numInputs = 2;
}
if (numInputs == 2)
{
v[2] = Cross(v[0], v[1]);
return Orthonormalize<3, Real>(3, v, robust);
}
return (Real)0;
}
// Compute the barycentric coordinates of the point P with respect to the
// tetrahedron <V0,V1,V2,V3>, P = b0*V0 + b1*V1 + b2*V2 + b3*V3, where
// b0 + b1 + b2 + b3 = 1. The return value is 'true' iff {V0,V1,V2,V3} is
// a linearly independent set. Numerically, this is measured by
// |det[V0 V1 V2 V3]| <= epsilon. The values bary[] are valid only when
// the return value is 'true' but set to zero when the return value is
// 'false'.
template <typename Real>
bool ComputeBarycentrics(Vector3<Real> const& p, Vector3<Real> const& v0,
Vector3<Real> const& v1, Vector3<Real> const& v2, Vector3<Real> const& v3,
Real bary[4], Real epsilon = (Real)0)
{
// Compute the vectors relative to V3 of the tetrahedron.
Vector3<Real> diff[4] = { v0 - v3, v1 - v3, v2 - v3, p - v3 };
Real det = DotCross(diff[0], diff[1], diff[2]);
if (det < -epsilon || det > epsilon)
{
Real invDet = ((Real)1) / det;
bary[0] = DotCross(diff[3], diff[1], diff[2]) * invDet;
bary[1] = DotCross(diff[3], diff[2], diff[0]) * invDet;
bary[2] = DotCross(diff[3], diff[0], diff[1]) * invDet;
bary[3] = (Real)1 - bary[0] - bary[1] - bary[2];
return true;
}
for (int i = 0; i < 4; ++i)
{
bary[i] = (Real)0;
}
return false;
}
// Get intrinsic information about the input array of vectors. The return
// value is 'true' iff the inputs are valid (numVectors > 0, v is not
// null, and epsilon >= 0), in which case the class members are valid.
template <typename Real>
class IntrinsicsVector3
{
public:
// The constructor sets the class members based on the input set.
IntrinsicsVector3(int numVectors, Vector3<Real> const* v, Real inEpsilon)
:
epsilon(inEpsilon),
dimension(0),
maxRange((Real)0),
origin{ (Real)0, (Real)0, (Real)0 },
extremeCCW(false)
{
min[0] = (Real)0;
min[1] = (Real)0;
min[2] = (Real)0;
direction[0] = { (Real)0, (Real)0, (Real)0 };
direction[1] = { (Real)0, (Real)0, (Real)0 };
direction[2] = { (Real)0, (Real)0, (Real)0 };
extreme[0] = 0;
extreme[1] = 0;
extreme[2] = 0;
extreme[3] = 0;
if (numVectors > 0 && v && epsilon >= (Real)0)
{
// Compute the axis-aligned bounding box for the input vectors.
// Keep track of the indices into 'vectors' for the current
// min and max.
int j, indexMin[3], indexMax[3];
for (j = 0; j < 3; ++j)
{
min[j] = v[0][j];
max[j] = min[j];
indexMin[j] = 0;
indexMax[j] = 0;
}
int i;
for (i = 1; i < numVectors; ++i)
{
for (j = 0; j < 3; ++j)
{
if (v[i][j] < min[j])
{
min[j] = v[i][j];
indexMin[j] = i;
}
else if (v[i][j] > max[j])
{
max[j] = v[i][j];
indexMax[j] = i;
}
}
}
// Determine the maximum range for the bounding box.
maxRange = max[0] - min[0];
extreme[0] = indexMin[0];
extreme[1] = indexMax[0];
Real range = max[1] - min[1];
if (range > maxRange)
{
maxRange = range;
extreme[0] = indexMin[1];
extreme[1] = indexMax[1];
}
range = max[2] - min[2];
if (range > maxRange)
{
maxRange = range;
extreme[0] = indexMin[2];
extreme[1] = indexMax[2];
}
// The origin is either the vector of minimum x0-value, vector
// of minimum x1-value, or vector of minimum x2-value.
origin = v[extreme[0]];
// Test whether the vector set is (nearly) a vector.
if (maxRange <= epsilon)
{
dimension = 0;
for (j = 0; j < 3; ++j)
{
extreme[j + 1] = extreme[0];
}
return;
}
// Test whether the vector set is (nearly) a line segment. We
// need {direction[2],direction[3]} to span the orthogonal
// complement of direction[0].
direction[0] = v[extreme[1]] - origin;
Normalize(direction[0], false);
if (std::fabs(direction[0][0]) > std::fabs(direction[0][1]))
{
direction[1][0] = -direction[0][2];
direction[1][1] = (Real)0;
direction[1][2] = +direction[0][0];
}
else
{
direction[1][0] = (Real)0;
direction[1][1] = +direction[0][2];
direction[1][2] = -direction[0][1];
}
Normalize(direction[1], false);
direction[2] = Cross(direction[0], direction[1]);
// Compute the maximum distance of the points from the line
// origin + t * direction[0].
Real maxDistance = (Real)0;
Real distance, dot;
extreme[2] = extreme[0];
for (i = 0; i < numVectors; ++i)
{
Vector3<Real> diff = v[i] - origin;
dot = Dot(direction[0], diff);
Vector3<Real> proj = diff - dot * direction[0];
distance = Length(proj, false);
if (distance > maxDistance)
{
maxDistance = distance;
extreme[2] = i;
}
}
if (maxDistance <= epsilon * maxRange)
{
// The points are (nearly) on the line
// origin + t * direction[0].
dimension = 1;
extreme[2] = extreme[1];
extreme[3] = extreme[1];
return;
}
// Test whether the vector set is (nearly) a planar polygon.
// The point v[extreme[2]] is farthest from the line:
// origin + t * direction[0]. The vector
// v[extreme[2]] - origin is not necessarily perpendicular to
// direction[0], so project out the direction[0] component so
// that the result is perpendicular to direction[0].
direction[1] = v[extreme[2]] - origin;
dot = Dot(direction[0], direction[1]);
direction[1] -= dot * direction[0];
Normalize(direction[1], false);
// We need direction[2] to span the orthogonal complement of
// {direction[0],direction[1]}.
direction[2] = Cross(direction[0], direction[1]);
// Compute the maximum distance of the points from the plane
// origin+t0 * direction[0] + t1 * direction[1].
maxDistance = (Real)0;
Real maxSign = (Real)0;
extreme[3] = extreme[0];
for (i = 0; i < numVectors; ++i)
{
Vector3<Real> diff = v[i] - origin;
distance = Dot(direction[2], diff);
Real sign = (distance > (Real)0 ? (Real)1 :
(distance < (Real)0 ? (Real)-1 : (Real)0));
distance = std::fabs(distance);
if (distance > maxDistance)
{
maxDistance = distance;
maxSign = sign;
extreme[3] = i;
}
}
if (maxDistance <= epsilon * maxRange)
{
// The points are (nearly) on the plane
// origin + t0 * direction[0] + t1 * direction[1].
dimension = 2;
extreme[3] = extreme[2];
return;
}
dimension = 3;
extremeCCW = (maxSign > (Real)0);
return;
}
}
// A nonnegative tolerance that is used to determine the intrinsic
// dimension of the set.
Real epsilon;
// The intrinsic dimension of the input set, computed based on the
// nonnegative tolerance mEpsilon.
int dimension;
// Axis-aligned bounding box of the input set. The maximum range is
// the larger of max[0]-min[0], max[1]-min[1], and max[2]-min[2].
Real min[3], max[3];
Real maxRange;
// Coordinate system. The origin is valid for any dimension d. The
// unit-length direction vector is valid only for 0 <= i < d. The
// extreme index is relative to the array of input points, and is also
// valid only for 0 <= i < d. If d = 0, all points are effectively
// the same, but the use of an epsilon may lead to an extreme index
// that is not zero. If d = 1, all points effectively lie on a line
// segment. If d = 2, all points effectively line on a plane. If
// d = 3, the points are not coplanar.
Vector3<Real> origin;
Vector3<Real> direction[3];
// The indices that define the maximum dimensional extents. The
// values extreme[0] and extreme[1] are the indices for the points
// that define the largest extent in one of the coordinate axis
// directions. If the dimension is 2, then extreme[2] is the index
// for the point that generates the largest extent in the direction
// perpendicular to the line through the points corresponding to
// extreme[0] and extreme[1]. Furthermore, if the dimension is 3,
// then extreme[3] is the index for the point that generates the
// largest extent in the direction perpendicular to the triangle
// defined by the other extreme points. The tetrahedron formed by the
// points V[extreme[0]], V[extreme[1]], V[extreme[2]], and
// V[extreme[3]] is clockwise or counterclockwise, the condition
// stored in extremeCCW.
int extreme[4];
bool extremeCCW;
};
}