You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

232 lines
6.4 KiB

3 months ago
// David Eberly, Geometric Tools, Redmond WA 98052
// Copyright (c) 1998-2021
// Distributed under the Boost Software License, Version 1.0.
// https://www.boost.org/LICENSE_1_0.txt
// https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
// Version: 4.0.2020.04.04
#pragma once
#include <Mathematics/Logger.h>
#include <Mathematics/UIntegerALU32.h>
#include <limits>
#include <istream>
#include <ostream>
#include <vector>
// Class UIntegerAP32 is designed to support arbitrary precision arithmetic
// using BSNumber and BSRational. It is not a general-purpose class for
// arithmetic of unsigned integers.
// Uncomment this to collect statistics on how large the UIntegerAP32 storage
// becomes when using it for the UInteger of BSNumber. If you use this
// feature, you must define gsUIntegerAP32MaxSize somewhere in your code.
// After a sequence of BSNumber operations, look at gsUIntegerAP32MaxSize in
// the debugger watch window. If the number is not too large, you might be
// safe in replacing UIntegerAP32 by UIntegerFP32<N>, where N is the value of
// gsUIntegerAP32MaxSize. This leads to much faster code because you no
// longer have dynamic memory allocations and deallocations that occur
// regularly with std::vector<uint32_t> during BSNumber operations. A safer
// choice is to argue mathematically that the maximum size is bounded by N.
// This requires an analysis of how many bits of precision you need for the
// types of computation you perform. See class BSPrecision for code that
// allows you to compute maximum N.
//
//#define GTE_COLLECT_UINTEGERAP32_STATISTICS
#if defined(GTE_COLLECT_UINTEGERAP32_STATISTICS)
#include <Mathematics/AtomicMinMax.h>
namespace gte
{
extern std::atomic<size_t> gsUIntegerAP32MaxSize;
}
#endif
namespace gte
{
class UIntegerAP32 : public UIntegerALU32<UIntegerAP32>
{
public:
// Construction.
UIntegerAP32()
:
mNumBits(0)
{
}
UIntegerAP32(UIntegerAP32 const& number)
{
*this = number;
}
UIntegerAP32(uint32_t number)
{
if (number > 0)
{
int32_t first = BitHacks::GetLeadingBit(number);
int32_t last = BitHacks::GetTrailingBit(number);
mNumBits = first - last + 1;
mBits.resize(1);
mBits[0] = (number >> last);
}
else
{
mNumBits = 0;
}
#if defined(GTE_COLLECT_UINTEGERAP32_STATISTICS)
AtomicMax(gsUIntegerAP32MaxSize, mBits.size());
#endif
}
UIntegerAP32(uint64_t number)
{
if (number > 0)
{
int32_t first = BitHacks::GetLeadingBit(number);
int32_t last = BitHacks::GetTrailingBit(number);
number >>= last;
mNumBits = first - last + 1;
mBits.resize(1 + (mNumBits - 1) / 32);
mBits[0] = (uint32_t)(number & 0x00000000FFFFFFFFull);
if (mBits.size() > 1)
{
mBits[1] = (uint32_t)((number >> 32) & 0x00000000FFFFFFFFull);
}
}
else
{
mNumBits = 0;
}
#if defined(GTE_COLLECT_UINTEGERAP32_STATISTICS)
AtomicMax(gsUIntegerAP32MaxSize, mBits.size());
#endif
}
// Assignment.
UIntegerAP32& operator=(UIntegerAP32 const& number)
{
mNumBits = number.mNumBits;
mBits = number.mBits;
return *this;
}
// Support for std::move.
UIntegerAP32(UIntegerAP32&& number) noexcept
{
*this = std::move(number);
}
UIntegerAP32& operator=(UIntegerAP32&& number) noexcept
{
mNumBits = number.mNumBits;
mBits = std::move(number.mBits);
number.mNumBits = 0;
return *this;
}
// Member access.
void SetNumBits(int32_t numBits)
{
if (numBits > 0)
{
mNumBits = numBits;
mBits.resize(1 + (numBits - 1) / 32);
}
else if (numBits == 0)
{
mNumBits = 0;
mBits.clear();
}
else
{
LogError("The number of bits must be nonnegative.");
}
#if defined(GTE_COLLECT_UINTEGERAP32_STATISTICS)
AtomicMax(gsUIntegerAP32MaxSize, mBits.size());
#endif
}
inline int32_t GetNumBits() const
{
return mNumBits;
}
inline std::vector<uint32_t> const& GetBits() const
{
return mBits;
}
inline std::vector<uint32_t>& GetBits()
{
return mBits;
}
inline void SetBack(uint32_t value)
{
mBits.back() = value;
}
inline uint32_t GetBack() const
{
return mBits.back();
}
inline int32_t GetSize() const
{
return static_cast<int32_t>(mBits.size());
}
inline static int32_t GetMaxSize()
{
return std::numeric_limits<int32_t>::max();
}
inline void SetAllBitsToZero()
{
std::fill(mBits.begin(), mBits.end(), 0u);
}
// Disk input/output. The return value is 'true' iff the operation
// was successful.
bool Write(std::ostream& output) const
{
if (output.write((char const*)& mNumBits, sizeof(mNumBits)).bad())
{
return false;
}
std::size_t size = mBits.size();
if (output.write((char const*)& size, sizeof(size)).bad())
{
return false;
}
return output.write((char const*)& mBits[0], size * sizeof(mBits[0])).good();
}
bool Read(std::istream& input)
{
if (input.read((char*)& mNumBits, sizeof(mNumBits)).bad())
{
return false;
}
std::size_t size;
if (input.read((char*)& size, sizeof(size)).bad())
{
return false;
}
mBits.resize(size);
return input.read((char*)& mBits[0], size * sizeof(mBits[0])).good();
}
private:
int32_t mNumBits;
std::vector<uint32_t> mBits;
};
}