You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

231 lines
7.5 KiB

3 months ago
// David Eberly, Geometric Tools, Redmond WA 98052
// Copyright (c) 1998-2021
// Distributed under the Boost Software License, Version 1.0.
// https://www.boost.org/LICENSE_1_0.txt
// https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
// Version: 4.0.2019.08.13
#pragma once
#include <Mathematics/Vector3.h>
// A torus with origin (0,0,0), outer radius r0 and inner radius r1 (with
// (r0 >= r1) is defined implicitly as follows. The point P0 = (x,y,z) is on
// the torus. Its projection onto the xy-plane is P1 = (x,y,0). The circular
// cross section of the torus that contains the projection has radius r0 and
// center P2 = r0*(x,y,0)/sqrt(x^2+y^2). The points triangle <P0,P1,P2> is a
// right triangle with right angle at P1. The hypotenuse <P0,P2> has length
// r1, leg <P1,P2> has length z and leg <P0,P1> has length
// |r0 - sqrt(x^2+y^2)|. The Pythagorean theorem says
// z^2 + |r0 - sqrt(x^2+y^2)|^2 = r1^2. This can be algebraically
// manipulated to
// (x^2 + y^2 + z^2 + r0^2 - r1^2)^2 - 4 * r0^2 * (x^2 + y^2) = 0
//
// A parametric form is
// x = (r0 + r1 * cos(v)) * cos(u)
// y = (r0 + r1 * cos(v)) * sin(u)
// z = r1 * sin(v)
// for u in [0,2*pi) and v in [0,2*pi).
//
// Generally, let the torus center be C with plane of symmetry containing C
// and having directions D0 and D1. The axis of symmetry is the line
// containing C and having direction N (the plane normal). The radius from
// the center of the torus is r0 and the radius of the tube of the torus is
// r1. A point P may be written as P = C + x*D0 + y*D1 + z*N, where matrix
// [D0 D1 N] is orthonormal and has determinant 1. Thus, x = Dot(D0,P-C),
// y = Dot(D1,P-C) and z = Dot(N,P-C). The implicit form is
// [|P-C|^2 + r0^2 - r1^2]^2 - 4*r0^2*[|P-C|^2 - (Dot(N,P-C))^2] = 0
// Observe that D0 and D1 are not present in the equation, which is to be
// expected by the symmetry. The parametric form is
// P(u,v) = C + (r0 + r1*cos(v))*(cos(u)*D0 + sin(u)*D1) + r1*sin(v)*N
// for u in [0,2*pi) and v in [0,2*pi).
//
// In the class Torus3, the members are 'center' C, 'direction0' D0,
// 'direction1' D1, 'normal' N, 'radius0' r0 and 'radius1' r1.
namespace gte
{
template <typename Real>
class Torus3
{
public:
// Construction and destruction. The default constructor sets center
// to (0,0,0), direction0 to (1,0,0), direction1 to (0,1,0), normal
// to (0,0,1), radius0 to 2 and radius1 to 1.
Torus3()
:
center(Vector3<Real>::Zero()),
direction0(Vector3<Real>::Unit(0)),
direction1(Vector3<Real>::Unit(1)),
normal(Vector3<Real>::Unit(2)),
radius0((Real)2),
radius1((Real)1)
{
}
Torus3(Vector3<Real> const& inCenter, Vector3<Real> const& inDirection0,
Vector3<Real> const& inDirection1, Vector3<Real> const& inNormal,
Real inRadius0, Real inRadius1)
:
center(inCenter),
direction0(inDirection0),
direction1(inDirection1),
normal(inNormal),
radius0(inRadius0),
radius1(inRadius1)
{
}
// Evaluation of the surface. The function supports derivative
// calculation through order 2; that is, maxOrder <= 2 is required.
// If you want only the position, pass in maxOrder of 0. If you want
// the position and first-order derivatives, pass in maxOrder of 1,
// and so on. The output 'values' are ordered as: position X;
// first-order derivatives dX/du, dX/dv; second-order derivatives
// d2X/du2, d2X/dudv, d2X/dv2. The input array 'jet' must have enough
// storage for the specified order.
void Evaluate(Real u, Real v, unsigned int maxOrder, Vector3<Real>* jet) const
{
// Compute position.
Real csu = std::cos(u);
Real snu = std::sin(u);
Real csv = std::cos(v);
Real snv = std::sin(v);
Real r1csv = radius1 * csv;
Real r1snv = radius1 * snv;
Real r0pr1csv = radius0 + r1csv;
Vector3<Real> combo0 = csu * direction0 + snu * direction1;
Vector3<Real> r0pr1csvcombo0 = r0pr1csv * combo0;
Vector3<Real> r1snvnormal = r1snv * normal;
jet[0] = center + r0pr1csvcombo0 + r1snvnormal;
if (maxOrder >= 1)
{
// Compute first-order derivatives.
Vector3<Real> combo1 = -snu * direction0 + csu * direction1;
jet[1] = r0pr1csv * combo1;
jet[2] = -r1snv * combo0 + r1csv * normal;
if (maxOrder == 2)
{
// Compute second-order derivatives.
jet[3] = -r0pr1csvcombo0;
jet[4] = -r1snv * combo1;
jet[5] = -r1csv * combo0 - r1snvnormal;
}
}
}
// Reverse lookup of parameters from position.
void GetParameters(Vector3<Real> const& X, Real& u, Real& v) const
{
Vector3<Real> delta = X - center;
// (r0 + r1*cos(v))*cos(u)
Real dot0 = Dot(direction0, delta);
// (r0 + r1*cos(v))*sin(u)
Real dot1 = Dot(direction1, delta);
// r1*sin(v)
Real dot2 = Dot(normal, delta);
// r1*cos(v)
Real r1csv = std::sqrt(dot0 * dot0 + dot1 * dot1) - radius0;
u = std::atan2(dot1, dot0);
v = std::atan2(dot2, r1csv);
}
Vector3<Real> center, direction0, direction1, normal;
Real radius0, radius1;
public:
// Comparisons to support sorted containers.
bool operator==(Torus3 const& torus) const
{
return center == torus.center
&& direction0 == torus.direction0
&& direction1 == torus.direction1
&& normal == torus.normal
&& radius0 == torus.radius0
&& radius1 == torus.radius1;
}
bool operator!=(Torus3 const& torus) const
{
return !operator==(torus);
}
bool operator< (Torus3 const& torus) const
{
if (center < torus.center)
{
return true;
}
if (center > torus.center)
{
return false;
}
if (direction0 < torus.direction0)
{
return true;
}
if (direction0 > torus.direction0)
{
return false;
}
if (direction1 < torus.direction1)
{
return true;
}
if (direction1 > torus.direction1)
{
return false;
}
if (normal < torus.normal)
{
return true;
}
if (normal > torus.normal)
{
return false;
}
if (radius0 < torus.radius0)
{
return true;
}
if (radius0 > torus.radius0)
{
return false;
}
return radius1 < torus.radius1;
}
bool operator<=(Torus3 const& torus) const
{
return !torus.operator<(*this);
}
bool operator> (Torus3 const& torus) const
{
return torus.operator<(*this);
}
bool operator>=(Torus3 const& torus) const
{
return !operator<(torus);
}
};
}