You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

223 lines
8.1 KiB

3 months ago
// David Eberly, Geometric Tools, Redmond WA 98052
// Copyright (c) 1998-2021
// Distributed under the Boost Software License, Version 1.0.
// https://www.boost.org/LICENSE_1_0.txt
// https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
// Version: 4.0.2021.01.14
#pragma once
#include <Mathematics/ConvexHull3.h>
#include <Mathematics/Hyperplane.h>
// Separate two point sets, if possible, by computing a plane for which the
// point sets lie on opposite sides. The algorithm computes the convex hull
// of the point sets, then uses the method of separating axes to determine
// whether the two convex polyhedra are disjoint.
// https://www.geometrictools.com/Documentation/MethodOfSeparatingAxes.pdf
namespace gte
{
template <typename Real, typename ComputeType>
class SeparatePoints3
{
public:
// The return value is 'true' if and only if there is a separation.
// If 'true', the returned plane is a separating plane. The code
// assumes that each point set has at least 4 noncoplanar points.
bool operator()(size_t numPoints0, Vector3<Real> const* points0,
size_t numPoints1, Vector3<Real> const* points1,
Plane3<Real>& separatingPlane) const
{
// Construct convex hull of point set 0.
ConvexHull3<Real> ch0;
ch0(numPoints0, points0, 0);
if (ch0.GetDimension() != 3)
{
return false;
}
// Construct convex hull of point set 1.
ConvexHull3<Real> ch1;
ch1(numPoints1, points1, 0);
if (ch1.GetDimension() != 3)
{
return false;
}
auto const& hull0 = ch0.GetHull();
auto const& hull1 = ch1.GetHull();
size_t numTriangles0 = hull0.size() / 3;
size_t numTriangles1 = hull1.size();
// Test faces of hull 0 for possible separation of points.
size_t i, i0, i1, i2;
int side0, side1;
Vector3<Real> diff0, diff1;
for (i = 0; i < numTriangles0; ++i)
{
// Look up face (assert: i0 != i1 && i0 != i2 && i1 != i2).
i0 = hull0[3 * i];
i1 = hull0[3 * i + 1];
i2 = hull0[3 * i + 2];
// Compute potential separating plane
// (assert: normal != (0,0,0)).
separatingPlane = Plane3<Real>({ points0[i0], points0[i1], points0[i2] });
// Determine whether hull 1 is on same side of plane.
side1 = OnSameSide(separatingPlane, numTriangles1, hull1.data(), points1);
if (side1)
{
// Determine on which side of plane hull 0 lies.
side0 = WhichSide(separatingPlane, numTriangles0, hull0.data(), points0);
if (side0 * side1 <= 0) // Plane separates hulls.
{
return true;
}
}
}
// Test faces of hull 1 for possible separation of points.
for (i = 0; i < numTriangles1; ++i)
{
// Look up edge (assert: i0 != i1 && i0 != i2 && i1 != i2).
i0 = hull1[3 * i];
i1 = hull1[3 * i + 1];
i2 = hull1[3 * i + 2];
// Compute perpendicular to face
// (assert: normal != (0,0,0)).
separatingPlane = Plane3<Real>({ points1[i0], points1[i1], points1[i2] });
// Determine whether hull 0 is on same side of plane.
side0 = OnSameSide(separatingPlane, numTriangles0, hull0.data(), points0);
if (side0)
{
// Determine on which side of plane hull 1 lies.
side1 = WhichSide(separatingPlane, numTriangles1, hull1.data(), points1);
if (side0 * side1 <= 0) // Plane separates hulls.
{
return true;
}
}
}
// Build edge set for hull 0.
std::set<std::pair<size_t, size_t>> edgeSet0;
for (i = 0; i < numTriangles0; ++i)
{
// Look up face (assert: i0 != i1 && i0 != i2 && i1 != i2).
i0 = hull0[3 * i];
i1 = hull0[3 * i + 1];
i2 = hull0[3 * i + 2];
edgeSet0.insert(std::make_pair(i0, i1));
edgeSet0.insert(std::make_pair(i0, i2));
edgeSet0.insert(std::make_pair(i1, i2));
}
// Build edge list for hull 1.
std::set<std::pair<size_t, size_t>> edgeSet1;
for (i = 0; i < numTriangles1; ++i)
{
// Look up face (assert: i0 != i1 && i0 != i2 && i1 != i2).
i0 = hull1[3 * i];
i1 = hull1[3 * i + 1];
i2 = hull1[3 * i + 2];
edgeSet1.insert(std::make_pair(i0, i1));
edgeSet1.insert(std::make_pair(i0, i2));
edgeSet1.insert(std::make_pair(i1, i2));
}
// Test planes whose normals are cross products of two edges, one
// from each hull.
for (auto const& e0 : edgeSet0)
{
// Get edge.
diff0 = points0[e0.second] - points0[e0.first];
for (auto const& e1 : edgeSet1)
{
diff1 = points1[e1.second] - points1[e1.first];
// Compute potential separating plane.
separatingPlane.normal = UnitCross(diff0, diff1);
separatingPlane.constant = Dot(separatingPlane.normal,
points0[e0.first]);
// Determine if hull 0 is on same side of plane.
side0 = OnSameSide(separatingPlane, numTriangles0, hull0.data(), points0);
side1 = OnSameSide(separatingPlane, numTriangles1, hull1.data(), points1);
if (side0 * side1 < 0) // Plane separates hulls.
{
return true;
}
}
}
return false;
}
private:
int OnSameSide(Plane3<Real> const& plane, size_t numTriangles,
size_t const* indices, Vector3<Real> const* points) const
{
// Test whether all points on same side of plane Dot(N,X) = c.
size_t posSide = 0, negSide = 0;
for (size_t t = 0; t < numTriangles; ++t)
{
for (size_t i = 0; i < 3; ++i)
{
size_t v = indices[3 * t + i];
Real c0 = Dot(plane.normal, points[v]);
if (c0 > plane.constant)
{
++posSide;
}
else if (c0 < plane.constant)
{
++negSide;
}
if (posSide && negSide)
{
// Plane splits point set.
return 0;
}
}
}
return (posSide ? +1 : -1);
}
int WhichSide(Plane3<Real> const& plane, size_t numTriangles,
size_t const* indices, Vector3<Real> const* points) const
{
// Establish which side of plane hull is on.
for (size_t t = 0; t < numTriangles; ++t)
{
for (size_t i = 0; i < 3; ++i)
{
size_t v = indices[3 * t + i];
Real c0 = Dot(plane.normal, points[v]);
if (c0 > plane.constant)
{
// Positive side.
return +1;
}
if (c0 < plane.constant)
{
// Negative side.
return -1;
}
}
}
// Hull is effectively collinear.
return 0;
}
};
}