You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

449 lines
16 KiB

3 months ago
// David Eberly, Geometric Tools, Redmond WA 98052
// Copyright (c) 1998-2021
// Distributed under the Boost Software License, Version 1.0.
// https://www.boost.org/LICENSE_1_0.txt
// https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
// Version: 4.0.2021.04.22
#pragma once
#include <Mathematics/ContPointInPolygon2.h>
#include <Mathematics/ETManifoldMesh.h>
#include <Mathematics/PrimalQuery2.h>
// The planar mesh class is convenient for many applications involving
// searches for triangles containing a specified point. A couple of
// issues can show up in practice when the input data to the constructors
// is very large (number of triangles on the order of 10^5 or larger).
//
// The first constructor builds an ETManifoldMesh mesh that contains
// std::map objects. When such maps are large, the amount of time it
// takes to delete them is enormous. Although you can control the level
// of debug support in MSVS 2013 (see _ITERATOR_DEBUG_LEVEL), turning off
// checking might very well affect other classes for which you want
// iterator checking to be on. An alternative to reduce debugging time
// is to dynamically allocate the PlanarMesh object in the main thread but
// then launch another thread to delete the object and avoid stalling
// the main thread. For example,
//
// PlanarMesh<IT,CT,RT>* pmesh =
// new PlanarMesh<IT,CT,RT>(numV, vertices, numT, indices);
// <make various calls to pmesh>;
// std::thread deleter = [pmesh](){ delete pmesh; };
// deleter.detach(); // Do not wait for the thread to finish.
//
// The second constructor has the mesh passed in, but mTriIndexMap is used
// in both constructors and can take time to delete.
//
// The input mesh should be consistently oriented, say, the triangles are
// counterclockwise ordered. The vertices should be consistent with this
// ordering. However, floating-point rounding errors in generating the
// vertices can cause apparent fold-over of the mesh; that is, theoretically
// the vertex geometry supports counterclockwise geometry but numerical
// errors cause an inconsistency. This can manifest in the mQuery.ToLine
// tests whereby cycles of triangles occur in the linear walk. When cycles
// occur, GetContainingTriangle(P,startTriangle) will iterate numTriangle
// times before reporting that the triangle cannot be found, which is a
// very slow process (in debug or release builds). The function
// GetContainingTriangle(P,startTriangle,visited) is provided to avoid the
// performance loss, trapping a cycle the first time and exiting, but
// again reporting that the triangle cannot be found. If you know that the
// query should be (theoretically) successful, use the second version of
// GetContainingTriangle. If it fails by returning -1, then perform an
// exhaustive search over the triangles. For example,
//
// int triangle = pmesh->GetContainingTriangle(P,startTriangle,visited);
// if (triangle >= 0)
// {
// <take action; for example, compute barycenteric coordinates>;
// }
// else
// {
// int numTriangles = pmesh->GetNumTriangles();
// for (triangle = 0; triangle < numTriangles; ++triangle)
// {
// if (pmesh->Contains(triangle, P))
// {
// <take action>;
// break;
// }
// }
// if (triangle == numTriangles)
// {
// <Triangle still not found, take appropriate action>;
// }
// }
//
// The PlanarMesh<*>::Contains function does not require the triangles to
// be ordered.
namespace gte
{
template <typename InputType, typename ComputeType, typename RationalType>
class PlanarMesh
{
public:
// Construction. The inputs must represent a manifold mesh of
// triangles in the plane. The index array must have 3*numTriangles
// elements, each triple of indices representing a triangle in the
// mesh. Each index is into the 'vertices' array.
PlanarMesh(int numVertices, Vector2<InputType> const* vertices, int numTriangles, int const* indices)
:
mNumVertices(0),
mVertices(nullptr),
mNumTriangles(0)
{
LogAssert(numVertices >= 3 && vertices != nullptr && numTriangles >= 1
&& indices != nullptr, "Invalid input.");
// Create a mesh in order to get adjacency information.
int const* current = indices;
for (int t = 0; t < numTriangles; ++t)
{
int v0 = *current++;
int v1 = *current++;
int v2 = *current++;
if (!mMesh.Insert(v0, v1, v2))
{
// TODO: Fix this comment once the exception handling is
// tested.
//
// The 'mesh' object will throw on nonmanifold inputs.
return;
}
}
// We have a valid mesh.
CreateVertices(numVertices, vertices);
// Build the adjacency graph using the triangle ordering implied
// by the indices, not the mesh triangle map, to preserve the
// triangle ordering of the input indices.
mNumTriangles = numTriangles;
int const numIndices = 3 * numTriangles;
mIndices.resize(numIndices);
std::copy(indices, indices + numIndices, mIndices.begin());
for (int t = 0, vIndex = 0; t < numTriangles; ++t)
{
int v0 = indices[vIndex++];
int v1 = indices[vIndex++];
int v2 = indices[vIndex++];
TriangleKey<true> key(v0, v1, v2);
mTriIndexMap.insert(std::make_pair(key, t));
}
mAdjacencies.resize(numIndices);
auto const& tmap = mMesh.GetTriangles();
for (int t = 0, base = 0; t < numTriangles; ++t, base += 3)
{
int v0 = indices[base];
int v1 = indices[base + 1];
int v2 = indices[base + 2];
TriangleKey<true> key(v0, v1, v2);
auto element = tmap.find(key);
for (int i = 0; i < 3; ++i)
{
auto adj = element->second->T[i];
if (adj)
{
key = TriangleKey<true>(adj->V[0], adj->V[1], adj->V[2]);
mAdjacencies[base + i] = mTriIndexMap.find(key)->second;
}
else
{
mAdjacencies[base + i] = -1;
}
}
}
}
PlanarMesh(int numVertices, Vector2<InputType> const* vertices, ETManifoldMesh const& mesh)
:
mNumVertices(0),
mVertices(nullptr),
mNumTriangles(0)
{
if (numVertices < 3 || !vertices || mesh.GetTriangles().size() < 1)
{
throw std::invalid_argument("Invalid input in PlanarMesh constructor.");
}
// We have a valid mesh.
CreateVertices(numVertices, vertices);
// Build the adjacency graph using the triangle ordering implied
// by the mesh triangle map.
auto const& tmap = mesh.GetTriangles();
mNumTriangles = static_cast<int>(tmap.size());
mIndices.resize(3 * mNumTriangles);
int tIndex = 0, vIndex = 0;
for (auto const& element : tmap)
{
mTriIndexMap.insert(std::make_pair(element.first, tIndex++));
for (int i = 0; i < 3; ++i, ++vIndex)
{
mIndices[vIndex] = element.second->V[i];
}
}
mAdjacencies.resize(3 * mNumTriangles);
vIndex = 0;
for (auto const& element : tmap)
{
for (int i = 0; i < 3; ++i, ++vIndex)
{
auto adj = element.second->T[i];
if (adj)
{
TriangleKey<true> key(adj->V[0], adj->V[1], adj->V[2]);
mAdjacencies[vIndex] = mTriIndexMap.find(key)->second;
}
else
{
mAdjacencies[vIndex] = -1;
}
}
}
}
// Mesh information.
inline int GetNumVertices() const
{
return mNumVertices;
}
inline int GetNumTriangles() const
{
return mNumTriangles;
}
inline Vector2<InputType> const* GetVertices() const
{
return mVertices;
}
inline int const* GetIndices() const
{
return mIndices.data();
}
inline int const* GetAdjacencies() const
{
return mAdjacencies.data();
}
// Containment queries. The function GetContainingTriangle works
// correctly when the planar mesh is a convex set. If the mesh is not
// convex, it is possible that the linear-walk search algorithm exits
// the mesh before finding a containing triangle. For example, a
// C-shaped mesh can contain a point in the top branch of the "C".
// A starting point in the bottom branch of the "C" will lead to the
// search exiting the bottom branch and having no path to walk to the
// top branch. If your mesh is not convex and you want a correct
// containment query, you will have to append "outside" triangles to
// your mesh to form a convex set.
int GetContainingTriangle(Vector2<InputType> const& P, int startTriangle = 0) const
{
Vector2<ComputeType> test{ P[0], P[1] };
// Use triangle edges as binary separating lines.
int triangle = startTriangle;
for (int i = 0; i < mNumTriangles; ++i)
{
int ibase = 3 * triangle;
int const* v = &mIndices[ibase];
if (mQuery.ToLine(test, v[0], v[1]) > 0)
{
triangle = mAdjacencies[ibase];
if (triangle == -1)
{
return -1;
}
continue;
}
if (mQuery.ToLine(test, v[1], v[2]) > 0)
{
triangle = mAdjacencies[ibase + 1];
if (triangle == -1)
{
return -1;
}
continue;
}
if (mQuery.ToLine(test, v[2], v[0]) > 0)
{
triangle = mAdjacencies[ibase + 2];
if (triangle == -1)
{
return -1;
}
continue;
}
return triangle;
}
return -1;
}
int GetContainingTriangle(Vector2<InputType> const& P, int startTriangle, std::set<int>& visited) const
{
Vector2<ComputeType> test{ P[0], P[1] };
visited.clear();
// Use triangle edges as binary separating lines.
int triangle = startTriangle;
for (int i = 0; i < mNumTriangles; ++i)
{
visited.insert(triangle);
int ibase = 3 * triangle;
int const* v = &mIndices[ibase];
if (mQuery.ToLine(test, v[0], v[1]) > 0)
{
triangle = mAdjacencies[ibase];
if (triangle == -1 || visited.find(triangle) != visited.end())
{
return -1;
}
continue;
}
if (mQuery.ToLine(test, v[1], v[2]) > 0)
{
triangle = mAdjacencies[ibase + 1];
if (triangle == -1 || visited.find(triangle) != visited.end())
{
return -1;
}
continue;
}
if (mQuery.ToLine(test, v[2], v[0]) > 0)
{
triangle = mAdjacencies[ibase + 2];
if (triangle == -1 || visited.find(triangle) != visited.end())
{
return -1;
}
continue;
}
return triangle;
}
return -1;
}
bool GetVertices(int t, std::array<Vector2<InputType>, 3>& vertices) const
{
if (0 <= t && t < mNumTriangles)
{
for (int i = 0, vIndex = 3 * t; i < 3; ++i, ++vIndex)
{
vertices[i] = mVertices[mIndices[vIndex]];
}
return true;
}
return false;
}
bool GetIndices(int t, std::array<int, 3>& indices) const
{
if (0 <= t && t < mNumTriangles)
{
for (int i = 0, vIndex = 3 * t; i < 3; ++i, ++vIndex)
{
indices[i] = mIndices[vIndex];
}
return true;
}
return false;
}
bool GetAdjacencies(int t, std::array<int, 3>& adjacencies) const
{
if (0 <= t && t < mNumTriangles)
{
for (int i = 0, vIndex = 3 * t; i < 3; ++i, ++vIndex)
{
adjacencies[i] = mAdjacencies[vIndex];
}
return true;
}
return false;
}
bool GetBarycentrics(int t, Vector2<InputType> const& P, std::array<InputType, 3>& bary) const
{
std::array<int, 3> indices;
if (GetIndices(t, indices))
{
Vector2<RationalType> rtP{ P[0], P[1] };
std::array<Vector2<RationalType>, 3> rtV;
for (int i = 0; i < 3; ++i)
{
Vector2<ComputeType> const& V = mComputeVertices[indices[i]];
for (int j = 0; j < 2; ++j)
{
rtV[i][j] = (RationalType)V[j];
}
};
RationalType rtBary[3];
if (ComputeBarycentrics(rtP, rtV[0], rtV[1], rtV[2], rtBary))
{
for (int i = 0; i < 3; ++i)
{
bary[i] = (InputType)rtBary[i];
}
return true;
}
}
return false;
}
bool Contains(int triangle, Vector2<InputType> const& P) const
{
Vector2<ComputeType> test{ P[0], P[1] };
Vector2<ComputeType> v[3];
v[0] = mComputeVertices[mIndices[3 * triangle + 0]];
v[1] = mComputeVertices[mIndices[3 * triangle + 1]];
v[2] = mComputeVertices[mIndices[3 * triangle + 2]];
PointInPolygon2<ComputeType> pip(3, v);
return pip.Contains(test);
}
public:
void CreateVertices(int numVertices, Vector2<InputType> const* vertices)
{
mNumVertices = numVertices;
mVertices = vertices;
mComputeVertices.resize(mNumVertices);
for (int i = 0; i < mNumVertices; ++i)
{
for (int j = 0; j < 2; ++j)
{
mComputeVertices[i][j] = (ComputeType)mVertices[i][j];
}
}
mQuery.Set(mNumVertices, &mComputeVertices[0]);
}
int mNumVertices;
Vector2<InputType> const* mVertices;
int mNumTriangles;
std::vector<int> mIndices;
ETManifoldMesh mMesh;
std::map<TriangleKey<true>, int> mTriIndexMap;
std::vector<int> mAdjacencies;
std::vector<Vector2<ComputeType>> mComputeVertices;
PrimalQuery2<ComputeType> mQuery;
};
}