You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

286 lines
11 KiB

3 months ago
// David Eberly, Geometric Tools, Redmond WA 98052
// Copyright (c) 1998-2021
// Distributed under the Boost Software License, Version 1.0.
// https://www.boost.org/LICENSE_1_0.txt
// https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
// Version: 4.0.2019.08.13
#pragma once
#include <Mathematics/Matrix2x2.h>
#include <Mathematics/Matrix3x3.h>
// The MeshCurvature class estimates principal curvatures and principal
// directions at the vertices of a manifold triangle mesh. The algorithm
// is described in
// https://www.geometrictools.com/Documentation/MeshDifferentialGeometry.pdf
namespace gte
{
template <typename Real>
class MeshCurvature
{
public:
MeshCurvature() = default;
// The input to operator() is a triangle mesh with the specified
// vertex buffer and index buffer. The number of elements of
// 'indices' must be a multiple of 3, each triple of indices
// (3*t, 3*t+1, 3*t+2) representing the triangle with vertices
// (vertices[3*t], vertices[3*t+1], vertices[3*t+2]). The
// singularity threshold is a small nonnegative number. It is
// used to characterize whether the DWTrn matrix is singular. In
// theory, set the threshold to zero. In practice you might have
// to set this to a small positive number.
void operator()(
size_t numVertices, Vector3<Real> const* vertices,
size_t numTriangles, unsigned int const* indices,
Real singularityThreshold)
{
mNormals.resize(numVertices);
mMinCurvatures.resize(numVertices);
mMaxCurvatures.resize(numVertices);
mMinDirections.resize(numVertices);
mMaxDirections.resize(numVertices);
// Compute the normal vectors for the vertices as an
// area-weighted sum of the triangles sharing a vertex.
Vector3<Real> vzero{ (Real)0, (Real)0, (Real)0 };
std::fill(mNormals.begin(), mNormals.end(), vzero);
unsigned int const* currentIndex = indices;
for (size_t i = 0; i < numTriangles; ++i)
{
// Get vertex indices.
unsigned int v0 = *currentIndex++;
unsigned int v1 = *currentIndex++;
unsigned int v2 = *currentIndex++;
// Compute the normal (length provides a weighted sum).
Vector3<Real> edge1 = vertices[v1] - vertices[v0];
Vector3<Real> edge2 = vertices[v2] - vertices[v0];
Vector3<Real> normal = Cross(edge1, edge2);
mNormals[v0] += normal;
mNormals[v1] += normal;
mNormals[v2] += normal;
}
for (size_t i = 0; i < numVertices; ++i)
{
Normalize(mNormals[i]);
}
// Compute the matrix of normal derivatives.
Matrix3x3<Real> mzero;
std::vector<Matrix3x3<Real>> DNormal(numVertices, mzero);
std::vector<Matrix3x3<Real>> WWTrn(numVertices, mzero);
std::vector<Matrix3x3<Real>> DWTrn(numVertices, mzero);
std::vector<bool> DWTrnZero(numVertices, false);
currentIndex = indices;
for (size_t i = 0; i < numTriangles; ++i)
{
// Get vertex indices.
unsigned int v[3];
v[0] = *currentIndex++;
v[1] = *currentIndex++;
v[2] = *currentIndex++;
for (size_t j = 0; j < 3; j++)
{
unsigned int v0 = v[j];
unsigned int v1 = v[(j + 1) % 3];
unsigned int v2 = v[(j + 2) % 3];
// Compute the edge direction from vertex v0 to vertex v1,
// project it to the tangent plane of vertex v0 and
// compute the difference of adjacent normals.
Vector3<Real> E = vertices[v1] - vertices[v0];
Vector3<Real> W = E - Dot(E, mNormals[v0]) * mNormals[v0];
Vector3<Real> D = mNormals[v1] - mNormals[v0];
for (int row = 0; row < 3; ++row)
{
for (int col = 0; col < 3; ++col)
{
WWTrn[v0](row, col) += W[row] * W[col];
DWTrn[v0](row, col) += D[row] * W[col];
}
}
// Compute the edge direction from vertex v0 to vertex v2,
// project it to the tangent plane of vertex v0 and
// compute the difference of adjacent normals.
E = vertices[v2] - vertices[v0];
W = E - Dot(E, mNormals[v0]) * mNormals[v0];
D = mNormals[v2] - mNormals[v0];
for (int row = 0; row < 3; ++row)
{
for (int col = 0; col < 3; ++col)
{
WWTrn[v0](row, col) += W[row] * W[col];
DWTrn[v0](row, col) += D[row] * W[col];
}
}
}
}
// Add in N*N^T to W*W^T for numerical stability. In theory 0*0^T
// is added to D*W^T, but of course no update is needed in the
// implementation. Compute the matrix of normal derivatives.
for (size_t i = 0; i < numVertices; ++i)
{
for (int row = 0; row < 3; ++row)
{
for (int col = 0; col < 3; ++col)
{
WWTrn[i](row, col) = (Real)0.5 * WWTrn[i](row, col) +
mNormals[i][row] * mNormals[i][col];
DWTrn[i](row, col) *= (Real)0.5;
}
}
// Compute the max-abs entry of D*W^T. If this entry is
// (nearly) zero, flag the DNormal matrix as singular.
Real maxAbs = (Real)0;
for (int row = 0; row < 3; ++row)
{
for (int col = 0; col < 3; ++col)
{
Real absEntry = std::fabs(DWTrn[i](row, col));
if (absEntry > maxAbs)
{
maxAbs = absEntry;
}
}
}
if (maxAbs < singularityThreshold)
{
DWTrnZero[i] = true;
}
DNormal[i] = DWTrn[i] * Inverse(WWTrn[i]);
}
// If N is a unit-length normal at a vertex, let U and V be
// unit-length tangents so that {U, V, N} is an orthonormal set.
// Define the matrix J = [U | V], a 3-by-2 matrix whose columns
// are U and V. Define J^T to be the transpose of J, a 2-by-3
// matrix. Let dN/dX denote the matrix of first-order derivatives
// of the normal vector field. The shape matrix is
// S = (J^T * J)^{-1} * J^T * dN/dX * J = J^T * dN/dX * J
// where the superscript of -1 denotes the inverse; the formula
// allows for J to be created from non-perpendicular vectors. The
// matrix S is 2-by-2. The principal curvatures are the
// eigenvalues of S. If k is a principal curvature and W is the
// 2-by-1 eigenvector corresponding to it, then S*W = k*W (by
// definition). The corresponding 3-by-1 tangent vector at the
// vertex is a principal direction for k and is J*W.
for (size_t i = 0; i < numVertices; ++i)
{
// Compute U and V given N.
Vector3<Real> basis[3];
basis[0] = mNormals[i];
ComputeOrthogonalComplement(1, basis);
Vector3<Real> const& U = basis[1];
Vector3<Real> const& V = basis[2];
if (DWTrnZero[i])
{
// At a locally planar point.
mMinCurvatures[i] = (Real)0;
mMaxCurvatures[i] = (Real)0;
mMinDirections[i] = U;
mMaxDirections[i] = V;
continue;
}
// Compute S = J^T * dN/dX * J. In theory S is symmetric, but
// because dN/dX is estimated, we must ensure that the
// computed S is symmetric.
Real s00 = Dot(U, DNormal[i] * U);
Real s01 = Dot(U, DNormal[i] * V);
Real s10 = Dot(V, DNormal[i] * U);
Real s11 = Dot(V, DNormal[i] * V);
Real avr = (Real)0.5 * (s01 + s10);
Matrix2x2<Real> S{ s00, avr, avr, s11 };
// Compute the eigenvalues of S (min and max curvatures).
Real trace = S(0, 0) + S(1, 1);
Real det = S(0, 0) * S(1, 1) - S(0, 1) * S(1, 0);
Real discr = trace * trace - (Real)4.0 * det;
Real rootDiscr = std::sqrt(std::max(discr, (Real)0));
mMinCurvatures[i] = (Real)0.5* (trace - rootDiscr);
mMaxCurvatures[i] = (Real)0.5* (trace + rootDiscr);
// Compute the eigenvectors of S.
Vector2<Real> W0{ S(0, 1), mMinCurvatures[i] - S(0, 0) };
Vector2<Real> W1{ mMinCurvatures[i] - S(1, 1), S(1, 0) };
if (Dot(W0, W0) >= Dot(W1, W1))
{
Normalize(W0);
mMinDirections[i] = W0[0] * U + W0[1] * V;
}
else
{
Normalize(W1);
mMinDirections[i] = W1[0] * U + W1[1] * V;
}
W0 = Vector2<Real>{ S(0, 1), mMaxCurvatures[i] - S(0, 0) };
W1 = Vector2<Real>{ mMaxCurvatures[i] - S(1, 1), S(1, 0) };
if (Dot(W0, W0) >= Dot(W1, W1))
{
Normalize(W0);
mMaxDirections[i] = W0[0] * U + W0[1] * V;
}
else
{
Normalize(W1);
mMaxDirections[i] = W1[0] * U + W1[1] * V;
}
}
}
void operator()(
std::vector<Vector3<Real>> const& vertices,
std::vector<unsigned int> const& indices,
Real singularityThreshold)
{
operator()(vertices.size(), vertices.data(), indices.size() / 3,
indices.data(), singularityThreshold);
}
inline std::vector<Vector3<Real>> const& GetNormals() const
{
return mNormals;
}
inline std::vector<Real> const& GetMinCurvatures() const
{
return mMinCurvatures;
}
inline std::vector<Real> const& GetMaxCurvatures() const
{
return mMaxCurvatures;
}
inline std::vector<Vector3<Real>> const& GetMinDirections() const
{
return mMinDirections;
}
inline std::vector<Vector3<Real>> const& GetMaxDirections() const
{
return mMaxDirections;
}
private:
std::vector<Vector3<Real>> mNormals;
std::vector<Real> mMinCurvatures;
std::vector<Real> mMaxCurvatures;
std::vector<Vector3<Real>> mMinDirections;
std::vector<Vector3<Real>> mMaxDirections;
};
}