You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
161 lines
6.0 KiB
161 lines
6.0 KiB
3 months ago
|
// David Eberly, Geometric Tools, Redmond WA 98052
|
||
|
// Copyright (c) 1998-2021
|
||
|
// Distributed under the Boost Software License, Version 1.0.
|
||
|
// https://www.boost.org/LICENSE_1_0.txt
|
||
|
// https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
|
||
|
// Version: 4.0.2019.08.13
|
||
|
|
||
|
#pragma once
|
||
|
|
||
|
#include <Mathematics/Math.h>
|
||
|
|
||
|
// The algorithms here are based on solving the linear heat equation using
|
||
|
// finite differences in scale, not in time. The following document has
|
||
|
// a brief summary of the concept,
|
||
|
// https://www.geometrictools.com/Documentation/FastGaussianBlur.pdf
|
||
|
// The idea is to represent the blurred image as f(x,s) in terms of position
|
||
|
// x and scale s. Gaussian blurring is accomplished by using the input image
|
||
|
// I(x,s0) as the initial image (of scale s0 > 0) for the partial differential
|
||
|
// equation
|
||
|
// s*df/ds = s^2*Laplacian(f)
|
||
|
// where the Laplacian operator is
|
||
|
// Laplacian = (d/dx)^2, dimension 1
|
||
|
// Laplacian = (d/dx)^2+(d/dy)^2, dimension 2
|
||
|
// Laplacian = (d/dx)^2+(d/dy)^2+(d/dz)^2, dimension 3
|
||
|
//
|
||
|
// The term s*df/ds is approximated by
|
||
|
// s*df(x,s)/ds = (f(x,b*s)-f(x,s))/ln(b)
|
||
|
// for b > 1, but close to 1, where ln(b) is the natural logarithm of b. If
|
||
|
// you take the limit of the right-hand side as b approaches 1, you get the
|
||
|
// left-hand side.
|
||
|
//
|
||
|
// The term s^2*((d/dx)^2)f is approximated by
|
||
|
// s^2*((d/dx)^2)f = (f(x+h*s,s)-2*f(x,s)+f(x-h*s,s))/h^2
|
||
|
// for h > 0, but close to zero.
|
||
|
//
|
||
|
// Equating the approximations for the left-hand side and the right-hand side
|
||
|
// of the partial differential equation leads to the numerical method used in
|
||
|
// this code.
|
||
|
//
|
||
|
// For iterative application of these functions, the caller is responsible
|
||
|
// for constructing a geometric sequence of scales,
|
||
|
// s0, s1 = s0*b, s2 = s1*b = s0*b^2, ...
|
||
|
// where the base b satisfies 1 < b < exp(0.5*d) where d is the dimension of
|
||
|
// the image. The upper bound on b guarantees stability of the finite
|
||
|
// difference method used to approximate the partial differential equation.
|
||
|
// The method assumes a pixel size of h = 1.
|
||
|
|
||
|
namespace gte
|
||
|
{
|
||
|
// The image type must be one of short, int, float or double. The
|
||
|
// computations are performed using double. The input and output images
|
||
|
// must both have xBound*yBound elements and be stored in lexicographical
|
||
|
// order. The indexing is i = x + xBound * y.
|
||
|
|
||
|
template <typename T>
|
||
|
class FastGaussianBlur2
|
||
|
{
|
||
|
public:
|
||
|
void Execute(int xBound, int yBound, T const* input, T* output,
|
||
|
double scale, double logBase)
|
||
|
{
|
||
|
mXBound = xBound;
|
||
|
mYBound = yBound;
|
||
|
mInput = input;
|
||
|
mOutput = output;
|
||
|
|
||
|
int xBoundM1 = xBound - 1, yBoundM1 = yBound - 1;
|
||
|
for (int y = 0; y < yBound; ++y)
|
||
|
{
|
||
|
double ryps = static_cast<double>(y) + scale;
|
||
|
double ryms = static_cast<double>(y) - scale;
|
||
|
int yp1 = static_cast<int>(std::floor(ryps));
|
||
|
int ym1 = static_cast<int>(std::ceil(ryms));
|
||
|
|
||
|
for (int x = 0; x < xBound; ++x)
|
||
|
{
|
||
|
double rxps = x + scale;
|
||
|
double rxms = x - scale;
|
||
|
int xp1 = static_cast<int>(std::floor(rxps));
|
||
|
int xm1 = static_cast<int>(std::ceil(rxms));
|
||
|
|
||
|
double center = Input(x, y);
|
||
|
double xsum = -2.0 * center, ysum = xsum;
|
||
|
|
||
|
// x portion of second central difference
|
||
|
if (xp1 >= xBoundM1) // use boundary value
|
||
|
{
|
||
|
xsum += Input(xBoundM1, y);
|
||
|
}
|
||
|
else // linearly interpolate
|
||
|
{
|
||
|
double imgXp1 = Input(xp1, y);
|
||
|
double imgXp2 = Input(xp1 + 1, y);
|
||
|
double delta = rxps - static_cast<double>(xp1);
|
||
|
xsum += imgXp1 + delta * (imgXp2 - imgXp1);
|
||
|
}
|
||
|
|
||
|
if (xm1 <= 0) // use boundary value
|
||
|
{
|
||
|
xsum += Input(0, y);
|
||
|
}
|
||
|
else // linearly interpolate
|
||
|
{
|
||
|
double imgXm1 = Input(xm1, y);
|
||
|
double imgXm2 = Input(xm1 - 1, y);
|
||
|
double delta = rxms - static_cast<double>(xm1);
|
||
|
xsum += imgXm1 + delta * (imgXm1 - imgXm2);
|
||
|
}
|
||
|
|
||
|
// y portion of second central difference
|
||
|
if (yp1 >= yBoundM1) // use boundary value
|
||
|
{
|
||
|
ysum += Input(x, yBoundM1);
|
||
|
}
|
||
|
else // linearly interpolate
|
||
|
{
|
||
|
double imgYp1 = Input(x, yp1);
|
||
|
double imgYp2 = Input(x, yp1 + 1);
|
||
|
double delta = ryps - static_cast<double>(yp1);
|
||
|
ysum += imgYp1 + delta * (imgYp2 - imgYp1);
|
||
|
}
|
||
|
|
||
|
if (ym1 <= 0) // use boundary value
|
||
|
{
|
||
|
ysum += Input(x, 0);
|
||
|
}
|
||
|
else // linearly interpolate
|
||
|
{
|
||
|
double imgYm1 = Input(x, ym1);
|
||
|
double imgYm2 = Input(x, ym1 - 1);
|
||
|
double delta = ryms - static_cast<double>(ym1);
|
||
|
ysum += imgYm1 + delta * (imgYm1 - imgYm2);
|
||
|
}
|
||
|
|
||
|
Output(x, y) = static_cast<T>(center + logBase * (xsum + ysum));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
mXBound = 0;
|
||
|
mYBound = 0;
|
||
|
mInput = nullptr;
|
||
|
mOutput = nullptr;
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
inline double Input(int x, int y) const
|
||
|
{
|
||
|
return static_cast<double>(mInput[x + mXBound * y]);
|
||
|
}
|
||
|
|
||
|
inline T& Output(int x, int y)
|
||
|
{
|
||
|
return mOutput[x + mXBound * y];
|
||
|
}
|
||
|
|
||
|
int mXBound, mYBound;
|
||
|
T const* mInput;
|
||
|
T* mOutput;
|
||
|
};
|
||
|
}
|