You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

161 lines
6.0 KiB

3 months ago
// David Eberly, Geometric Tools, Redmond WA 98052
// Copyright (c) 1998-2021
// Distributed under the Boost Software License, Version 1.0.
// https://www.boost.org/LICENSE_1_0.txt
// https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
// Version: 4.0.2019.08.13
#pragma once
#include <Mathematics/Math.h>
// The algorithms here are based on solving the linear heat equation using
// finite differences in scale, not in time. The following document has
// a brief summary of the concept,
// https://www.geometrictools.com/Documentation/FastGaussianBlur.pdf
// The idea is to represent the blurred image as f(x,s) in terms of position
// x and scale s. Gaussian blurring is accomplished by using the input image
// I(x,s0) as the initial image (of scale s0 > 0) for the partial differential
// equation
// s*df/ds = s^2*Laplacian(f)
// where the Laplacian operator is
// Laplacian = (d/dx)^2, dimension 1
// Laplacian = (d/dx)^2+(d/dy)^2, dimension 2
// Laplacian = (d/dx)^2+(d/dy)^2+(d/dz)^2, dimension 3
//
// The term s*df/ds is approximated by
// s*df(x,s)/ds = (f(x,b*s)-f(x,s))/ln(b)
// for b > 1, but close to 1, where ln(b) is the natural logarithm of b. If
// you take the limit of the right-hand side as b approaches 1, you get the
// left-hand side.
//
// The term s^2*((d/dx)^2)f is approximated by
// s^2*((d/dx)^2)f = (f(x+h*s,s)-2*f(x,s)+f(x-h*s,s))/h^2
// for h > 0, but close to zero.
//
// Equating the approximations for the left-hand side and the right-hand side
// of the partial differential equation leads to the numerical method used in
// this code.
//
// For iterative application of these functions, the caller is responsible
// for constructing a geometric sequence of scales,
// s0, s1 = s0*b, s2 = s1*b = s0*b^2, ...
// where the base b satisfies 1 < b < exp(0.5*d) where d is the dimension of
// the image. The upper bound on b guarantees stability of the finite
// difference method used to approximate the partial differential equation.
// The method assumes a pixel size of h = 1.
namespace gte
{
// The image type must be one of short, int, float or double. The
// computations are performed using double. The input and output images
// must both have xBound*yBound elements and be stored in lexicographical
// order. The indexing is i = x + xBound * y.
template <typename T>
class FastGaussianBlur2
{
public:
void Execute(int xBound, int yBound, T const* input, T* output,
double scale, double logBase)
{
mXBound = xBound;
mYBound = yBound;
mInput = input;
mOutput = output;
int xBoundM1 = xBound - 1, yBoundM1 = yBound - 1;
for (int y = 0; y < yBound; ++y)
{
double ryps = static_cast<double>(y) + scale;
double ryms = static_cast<double>(y) - scale;
int yp1 = static_cast<int>(std::floor(ryps));
int ym1 = static_cast<int>(std::ceil(ryms));
for (int x = 0; x < xBound; ++x)
{
double rxps = x + scale;
double rxms = x - scale;
int xp1 = static_cast<int>(std::floor(rxps));
int xm1 = static_cast<int>(std::ceil(rxms));
double center = Input(x, y);
double xsum = -2.0 * center, ysum = xsum;
// x portion of second central difference
if (xp1 >= xBoundM1) // use boundary value
{
xsum += Input(xBoundM1, y);
}
else // linearly interpolate
{
double imgXp1 = Input(xp1, y);
double imgXp2 = Input(xp1 + 1, y);
double delta = rxps - static_cast<double>(xp1);
xsum += imgXp1 + delta * (imgXp2 - imgXp1);
}
if (xm1 <= 0) // use boundary value
{
xsum += Input(0, y);
}
else // linearly interpolate
{
double imgXm1 = Input(xm1, y);
double imgXm2 = Input(xm1 - 1, y);
double delta = rxms - static_cast<double>(xm1);
xsum += imgXm1 + delta * (imgXm1 - imgXm2);
}
// y portion of second central difference
if (yp1 >= yBoundM1) // use boundary value
{
ysum += Input(x, yBoundM1);
}
else // linearly interpolate
{
double imgYp1 = Input(x, yp1);
double imgYp2 = Input(x, yp1 + 1);
double delta = ryps - static_cast<double>(yp1);
ysum += imgYp1 + delta * (imgYp2 - imgYp1);
}
if (ym1 <= 0) // use boundary value
{
ysum += Input(x, 0);
}
else // linearly interpolate
{
double imgYm1 = Input(x, ym1);
double imgYm2 = Input(x, ym1 - 1);
double delta = ryms - static_cast<double>(ym1);
ysum += imgYm1 + delta * (imgYm1 - imgYm2);
}
Output(x, y) = static_cast<T>(center + logBase * (xsum + ysum));
}
}
mXBound = 0;
mYBound = 0;
mInput = nullptr;
mOutput = nullptr;
}
private:
inline double Input(int x, int y) const
{
return static_cast<double>(mInput[x + mXBound * y]);
}
inline T& Output(int x, int y)
{
return mOutput[x + mXBound * y];
}
int mXBound, mYBound;
T const* mInput;
T* mOutput;
};
}