You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

165 lines
6.2 KiB

3 months ago
// David Eberly, Geometric Tools, Redmond WA 98052
// Copyright (c) 1998-2021
// Distributed under the Boost Software License, Version 1.0.
// https://www.boost.org/LICENSE_1_0.txt
// https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
// Version: 4.0.2019.08.13
#pragma once
#include <Mathematics/ApprGaussian3.h>
#include <Mathematics/Hyperellipsoid.h>
#include <Mathematics/Matrix3x3.h>
#include <Mathematics/Projection.h>
#include <Mathematics/Rotation.h>
namespace gte
{
// The input points are fit with a Gaussian distribution. The center C of
// the ellipsoid is chosen to be the mean of the distribution. The axes
// of the ellipsoid are chosen to be the eigenvectors of the covariance
// matrix M. The shape of the ellipsoid is determined by the absolute
// values of the eigenvalues. NOTE: The construction is ill-conditioned
// if the points are (nearly) collinear or (nearly) planar. In this case
// M has a (nearly) zero eigenvalue, so inverting M is problematic.
template <typename Real>
bool GetContainer(int numPoints, Vector3<Real> const* points, Ellipsoid3<Real>& ellipsoid)
{
// Fit the points with a Gaussian distribution. The covariance
// matrix is M = sum_j D[j]*U[j]*U[j]^T, where D[j] are the
// eigenvalues and U[j] are corresponding unit-length eigenvectors.
ApprGaussian3<Real> fitter;
if (fitter.Fit(numPoints, points))
{
OrientedBox3<Real> box = fitter.GetParameters();
// If either eigenvalue is nonpositive, adjust the D[] values so
// that we actually build an ellipsoid.
for (int j = 0; j < 3; ++j)
{
if (box.extent[j] < (Real)0)
{
box.extent[j] = -box.extent[j];
}
}
// Grow the ellipsoid, while retaining its shape determined by the
// covariance matrix, to enclose all the input points. The
// quadratic/ form that is used for the ellipsoid construction is
// Q(X) = (X-C)^T*M*(X-C)
// = (X-C)^T*(sum_j D[j]*U[j]*U[j]^T)*(X-C)
// = sum_j D[j]*Dot(U[j],X-C)^2
// If the maximum value of Q(X[i]) for all input points is V^2,
// then a bounding ellipsoid is Q(X) = V^2 since Q(X[i]) <= V^2
// for all i.
Real maxValue = (Real)0;
for (int i = 0; i < numPoints; ++i)
{
Vector3<Real> diff = points[i] - box.center;
Real dot[3] =
{
Dot(box.axis[0], diff),
Dot(box.axis[1], diff),
Dot(box.axis[2], diff)
};
Real value =
box.extent[0] * dot[0] * dot[0] +
box.extent[1] * dot[1] * dot[1] +
box.extent[2] * dot[2] * dot[2];
if (value > maxValue)
{
maxValue = value;
}
}
// Arrange for the quadratic to satisfy Q(X) <= 1.
ellipsoid.center = box.center;
for (int j = 0; j < 3; ++j)
{
ellipsoid.axis[j] = box.axis[j];
ellipsoid.extent[j] = std::sqrt(maxValue / box.extent[j]);
}
return true;
}
return false;
}
// Test for containment of a point inside an ellipsoid.
template <typename Real>
bool InContainer(Vector3<Real> const& point, Ellipsoid3<Real> const& ellipsoid)
{
Vector3<Real> diff = point - ellipsoid.center;
Vector3<Real> standardized{
Dot(diff, ellipsoid.axis[0]) / ellipsoid.extent[0],
Dot(diff, ellipsoid.axis[1]) / ellipsoid.extent[1],
Dot(diff, ellipsoid.axis[2]) / ellipsoid.extent[2] };
return Length(standardized) <= (Real)1;
}
// Construct a bounding ellipsoid for the two input ellipsoids. The result is
// not necessarily the minimum-volume ellipsoid containing the two ellipsoids.
template <typename Real>
bool MergeContainers(Ellipsoid3<Real> const& ellipsoid0,
Ellipsoid3<Real> const& ellipsoid1, Ellipsoid3<Real>& merge)
{
// Compute the average of the input centers
merge.center = (Real)0.5 * (ellipsoid0.center + ellipsoid1.center);
// The bounding ellipsoid orientation is the average of the input
// orientations.
Matrix3x3<Real> rot0, rot1;
rot0.SetCol(0, ellipsoid0.axis[0]);
rot0.SetCol(1, ellipsoid0.axis[1]);
rot0.SetCol(2, ellipsoid0.axis[2]);
rot1.SetCol(0, ellipsoid1.axis[0]);
rot1.SetCol(1, ellipsoid1.axis[1]);
rot1.SetCol(2, ellipsoid1.axis[2]);
Quaternion<Real> q0 = Rotation<3, Real>(rot0);
Quaternion<Real> q1 = Rotation<3, Real>(rot1);
if (Dot(q0, q1) < (Real)0)
{
q1 = -q1;
}
Quaternion<Real> q = q0 + q1;
Normalize(q);
Matrix3x3<Real> rot = Rotation<3, Real>(q);
for (int j = 0; j < 3; ++j)
{
merge.axis[j] = rot.GetCol(j);
}
// Project the input ellipsoids onto the axes obtained by the average
// of the orientations and that go through the center obtained by the
// average of the centers.
for (int i = 0; i < 3; ++i)
{
// Projection axis.
Line3<Real> line(merge.center, merge.axis[i]);
// Project ellipsoids onto the axis.
Real min0, max0, min1, max1;
Project(ellipsoid0, line, min0, max0);
Project(ellipsoid1, line, min1, max1);
// Determine the smallest interval containing the projected
// intervals.
Real maxIntr = (max0 >= max1 ? max0 : max1);
Real minIntr = (min0 <= min1 ? min0 : min1);
// Update the average center to be the center of the bounding box
// defined by the projected intervals.
merge.center += line.direction * ((Real)0.5 * (minIntr + maxIntr));
// Compute the extents of the box based on the new center.
merge.extent[i] = (Real)0.5 * (maxIntr - minIntr);
}
return true;
}
}