You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

150 lines
5.6 KiB

3 months ago
// David Eberly, Geometric Tools, Redmond WA 98052
// Copyright (c) 1998-2021
// Distributed under the Boost Software License, Version 1.0.
// https://www.boost.org/LICENSE_1_0.txt
// https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
// Version: 4.0.2019.08.13
#pragma once
#include <Mathematics/ApprGaussian2.h>
#include <Mathematics/Hyperellipsoid.h>
#include <Mathematics/Projection.h>
namespace gte
{
// The input points are fit with a Gaussian distribution. The center C of
// the ellipse is chosen to be the mean of the distribution. The axes of
// the ellipse are chosen to be the eigenvectors of the covariance matrix
// M. The shape of the ellipse is determined by the absolute values of
// the eigenvalues. NOTE: The construction is ill-conditioned if the
// points are (nearly) collinear. In this case M has a (nearly) zero
// eigenvalue, so inverting M can be a problem numerically.
template <typename Real>
bool GetContainer(int numPoints, Vector2<Real> const* points, Ellipse2<Real>& ellipse)
{
// Fit the points with a Gaussian distribution. The covariance matrix
// is M = sum_j D[j]*U[j]*U[j]^T, where D[j] are the eigenvalues and
// U[j] are corresponding unit-length eigenvectors.
ApprGaussian2<Real> fitter;
if (fitter.Fit(numPoints, points))
{
OrientedBox2<Real> box = fitter.GetParameters();
// If either eigenvalue is nonpositive, adjust the D[] values so
// that we actually build an ellipse.
for (int j = 0; j < 2; ++j)
{
if (box.extent[j] < (Real)0)
{
box.extent[j] = -box.extent[j];
}
}
// Grow the ellipse, while retaining its shape determined by the
// covariance matrix, to enclose all the input points. The
// quadratic form that is used for the ellipse construction is
// Q(X) = (X-C)^T*M*(X-C)
// = (X-C)^T*(sum_j D[j]*U[j]*U[j]^T)*(X-C)
// = sum_j D[j]*Dot(U[j],X-C)^2
// If the maximum value of Q(X[i]) for all input points is V^2,
// then a bounding ellipse is Q(X) = V^2, because Q(X[i]) <= V^2
// for all i.
Real maxValue = (Real)0;
for (int i = 0; i < numPoints; ++i)
{
Vector2<Real> diff = points[i] - box.center;
Real dot[2] =
{
Dot(box.axis[0], diff),
Dot(box.axis[1], diff)
};
Real value =
box.extent[0] * dot[0] * dot[0] +
box.extent[1] * dot[1] * dot[1];
if (value > maxValue)
{
maxValue = value;
}
}
// Arrange for the quadratic to satisfy Q(X) <= 1.
ellipse.center = box.center;
for (int j = 0; j < 2; ++j)
{
ellipse.axis[j] = box.axis[j];
ellipse.extent[j] = std::sqrt(maxValue / box.extent[j]);
}
return true;
}
return false;
}
// Test for containment of a point inside an ellipse.
template <typename Real>
bool InContainer(Vector2<Real> const& point, Ellipse2<Real> const& ellipse)
{
Vector2<Real> diff = point - ellipse.center;
Vector2<Real> standardized{
Dot(diff, ellipse.axis[0]) / ellipse.extent[0],
Dot(diff, ellipse.axis[1]) / ellipse.extent[1] };
return Length(standardized) <= (Real)1;
}
// Construct a bounding ellipse for the two input ellipses. The result is
// not necessarily the minimum-area ellipse containing the two ellipses.
template <typename Real>
bool MergeContainers(Ellipse2<Real> const& ellipse0,
Ellipse2<Real> const& ellipse1, Ellipse2<Real>& merge)
{
// Compute the average of the input centers.
merge.center = (Real)0.5 * (ellipse0.center + ellipse1.center);
// The bounding ellipse orientation is the average of the input
// orientations.
if (Dot(ellipse0.axis[0], ellipse1.axis[0]) >= (Real)0)
{
merge.axis[0] = (Real)0.5 * (ellipse0.axis[0] + ellipse1.axis[0]);
}
else
{
merge.axis[0] = (Real)0.5 * (ellipse0.axis[0] - ellipse1.axis[0]);
}
Normalize(merge.axis[0]);
merge.axis[1] = -Perp(merge.axis[0]);
// Project the input ellipses onto the axes obtained by the average
// of the orientations and that go through the center obtained by the
// average of the centers.
for (int j = 0; j < 2; ++j)
{
// Projection axis.
Line2<Real> line(merge.center, merge.axis[j]);
// Project ellipsoids onto the axis.
Real min0, max0, min1, max1;
Project(ellipse0, line, min0, max0);
Project(ellipse1, line, min1, max1);
// Determine the smallest interval containing the projected
// intervals.
Real maxIntr = (max0 >= max1 ? max0 : max1);
Real minIntr = (min0 <= min1 ? min0 : min1);
// Update the average center to be the center of the bounding box
// defined by the projected intervals.
merge.center += line.direction * ((Real)0.5 * (minIntr + maxIntr));
// Compute the extents of the box based on the new center.
merge.extent[j] = (Real)0.5 * (maxIntr - minIntr);
}
return true;
}
}