You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
227 lines
7.8 KiB
227 lines
7.8 KiB
3 months ago
|
// David Eberly, Geometric Tools, Redmond WA 98052
|
||
|
// Copyright (c) 1998-2021
|
||
|
// Distributed under the Boost Software License, Version 1.0.
|
||
|
// https://www.boost.org/LICENSE_1_0.txt
|
||
|
// https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
|
||
|
// Version: 4.0.2019.08.13
|
||
|
|
||
|
#pragma once
|
||
|
|
||
|
#include <Mathematics/BandedMatrix.h>
|
||
|
#include <Mathematics/GMatrix.h>
|
||
|
#include <Mathematics/Integration.h>
|
||
|
#include <Mathematics/IntrIntervals.h>
|
||
|
#include <Mathematics/Vector.h>
|
||
|
|
||
|
// The BSplineReduction class is an implementation of the algorithm in
|
||
|
// https://www.geometrictools.com/Documentation/BSplineReduction.pdf
|
||
|
// for least-squares fitting of points in the continuous sense by
|
||
|
// an L2 integral norm. The least-squares fitting implemented in the
|
||
|
// file GteBSplineCurveFit.h is in the discrete sense by an L2 summation.
|
||
|
// The intended use for this class is to take an open B-spline curve,
|
||
|
// defined by its control points and degree, and reducing the number of
|
||
|
// control points dramatically to obtain another curve that is close to
|
||
|
// the original one.
|
||
|
|
||
|
namespace gte
|
||
|
{
|
||
|
// The input numCtrlPoints must be 2 or larger. The input degree must
|
||
|
// satisfy the condition 1 <= degree <= inControls.size()-1. The degree
|
||
|
// of the output curve is the same as that of the input curve. The input
|
||
|
// fraction must be in [0,1]. If the fraction is 1, the output curve
|
||
|
// is identical to the input curve. If the fraction is too small to
|
||
|
// produce a valid number of control points, outControls.size() is chosen
|
||
|
// to be degree+1.
|
||
|
template <int N, typename Real>
|
||
|
class BSplineReduction
|
||
|
{
|
||
|
public:
|
||
|
void operator()(std::vector<Vector<N, Real>> const& inControls,
|
||
|
int degree, Real fraction, std::vector<Vector<N, Real>>& outControls)
|
||
|
{
|
||
|
int numInControls = static_cast<int>(inControls.size());
|
||
|
LogAssert(numInControls >= 2 && 1 <= degree && degree < numInControls, "Invalid input.");
|
||
|
|
||
|
// Clamp the number of control points to [degree+1,quantity-1].
|
||
|
int numOutControls = static_cast<int>(fraction * numInControls);
|
||
|
if (numOutControls >= numInControls)
|
||
|
{
|
||
|
outControls = inControls;
|
||
|
return;
|
||
|
}
|
||
|
if (numOutControls < degree + 1)
|
||
|
{
|
||
|
numOutControls = degree + 1;
|
||
|
}
|
||
|
|
||
|
// Allocate output control points.
|
||
|
outControls.resize(numOutControls);
|
||
|
|
||
|
// Set up basis function parameters. Function 0 corresponds to
|
||
|
// the output curve. Function 1 corresponds to the input curve.
|
||
|
mDegree = degree;
|
||
|
mQuantity[0] = numOutControls;
|
||
|
mQuantity[1] = numInControls;
|
||
|
|
||
|
for (int j = 0; j <= 1; ++j)
|
||
|
{
|
||
|
mNumKnots[j] = mQuantity[j] + mDegree + 1;
|
||
|
mKnot[j].resize(mNumKnots[j]);
|
||
|
|
||
|
int i;
|
||
|
for (i = 0; i <= mDegree; ++i)
|
||
|
{
|
||
|
mKnot[j][i] = (Real)0;
|
||
|
}
|
||
|
|
||
|
Real factor = (Real)1 / static_cast<Real>(mQuantity[j] - mDegree);
|
||
|
for (/**/; i < mQuantity[j]; ++i)
|
||
|
{
|
||
|
mKnot[j][i] = (i - mDegree) * factor;
|
||
|
}
|
||
|
|
||
|
for (/**/; i < mNumKnots[j]; ++i)
|
||
|
{
|
||
|
mKnot[j][i] = (Real)1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Construct matrix A (depends only on the output basis function).
|
||
|
Real value, tmin, tmax;
|
||
|
int i0, i1;
|
||
|
|
||
|
mBasis[0] = 0;
|
||
|
mBasis[1] = 0;
|
||
|
|
||
|
std::function<Real(Real)> integrand = [this](Real t)
|
||
|
{
|
||
|
Real value0 = F(mBasis[0], mIndex[0], mDegree, t);
|
||
|
Real value1 = F(mBasis[1], mIndex[1], mDegree, t);
|
||
|
Real result = value0 * value1;
|
||
|
return result;
|
||
|
};
|
||
|
|
||
|
BandedMatrix<Real> A(mQuantity[0], mDegree, mDegree);
|
||
|
for (i0 = 0; i0 < mQuantity[0]; ++i0)
|
||
|
{
|
||
|
mIndex[0] = i0;
|
||
|
tmax = MaxSupport(0, i0);
|
||
|
|
||
|
for (i1 = i0; i1 <= i0 + mDegree && i1 < mQuantity[0]; ++i1)
|
||
|
{
|
||
|
mIndex[1] = i1;
|
||
|
tmin = MinSupport(0, i1);
|
||
|
|
||
|
value = Integration<Real>::Romberg(8, tmin, tmax, integrand);
|
||
|
A(i0, i1) = value;
|
||
|
A(i1, i0) = value;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Construct A^{-1}. TODO: This is inefficient. Use an iterative
|
||
|
// scheme to invert A?
|
||
|
GMatrix<Real> invA(mQuantity[0], mQuantity[0]);
|
||
|
bool invertible = A.template ComputeInverse<true>(&invA[0]);
|
||
|
LogAssert(invertible, "Failed to invert matrix.");
|
||
|
|
||
|
// Construct B (depends on both input and output basis functions).
|
||
|
mBasis[1] = 1;
|
||
|
GMatrix<Real> B(mQuantity[0], mQuantity[1]);
|
||
|
FIQuery<Real, std::array<Real, 2>, std::array<Real, 2>> query;
|
||
|
for (i0 = 0; i0 < mQuantity[0]; ++i0)
|
||
|
{
|
||
|
mIndex[0] = i0;
|
||
|
Real tmin0 = MinSupport(0, i0);
|
||
|
Real tmax0 = MaxSupport(0, i0);
|
||
|
|
||
|
for (i1 = 0; i1 < mQuantity[1]; ++i1)
|
||
|
{
|
||
|
mIndex[1] = i1;
|
||
|
Real tmin1 = MinSupport(1, i1);
|
||
|
Real tmax1 = MaxSupport(1, i1);
|
||
|
|
||
|
std::array<Real, 2> interval0 = { tmin0, tmax0 };
|
||
|
std::array<Real, 2> interval1 = { tmin1, tmax1 };
|
||
|
auto result = query(interval0, interval1);
|
||
|
if (result.numIntersections == 2)
|
||
|
{
|
||
|
value = Integration<Real>::Romberg(8, result.overlap[0],
|
||
|
result.overlap[1], integrand);
|
||
|
|
||
|
B(i0, i1) = value;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
B(i0, i1) = (Real)0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Construct A^{-1}*B.
|
||
|
GMatrix<Real> prod = invA * B;
|
||
|
|
||
|
// Construct the control points for the least-squares curve.
|
||
|
std::fill(outControls.begin(), outControls.end(), Vector<N, Real>::Zero());
|
||
|
for (i0 = 0; i0 < mQuantity[0]; ++i0)
|
||
|
{
|
||
|
for (i1 = 0; i1 < mQuantity[1]; ++i1)
|
||
|
{
|
||
|
outControls[i0] += inControls[i1] * prod(i0, i1);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
inline Real MinSupport(int basis, int i) const
|
||
|
{
|
||
|
return mKnot[basis][i];
|
||
|
}
|
||
|
|
||
|
inline Real MaxSupport(int basis, int i) const
|
||
|
{
|
||
|
return mKnot[basis][i + 1 + mDegree];
|
||
|
}
|
||
|
|
||
|
Real F(int basis, int i, int j, Real t)
|
||
|
{
|
||
|
if (j > 0)
|
||
|
{
|
||
|
Real result = (Real)0;
|
||
|
|
||
|
Real denom = mKnot[basis][i + j] - mKnot[basis][i];
|
||
|
if (denom > (Real)0)
|
||
|
{
|
||
|
result += (t - mKnot[basis][i]) *
|
||
|
F(basis, i, j - 1, t) / denom;
|
||
|
}
|
||
|
|
||
|
denom = mKnot[basis][i + j + 1] - mKnot[basis][i + 1];
|
||
|
if (denom > (Real)0)
|
||
|
{
|
||
|
result += (mKnot[basis][i + j + 1] - t) *
|
||
|
F(basis, i + 1, j - 1, t) / denom;
|
||
|
}
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
if (mKnot[basis][i] <= t && t < mKnot[basis][i + 1])
|
||
|
{
|
||
|
return (Real)1;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
return (Real)0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int mDegree;
|
||
|
std::array<int, 2> mQuantity;
|
||
|
std::array<int, 2> mNumKnots; // N+D+2
|
||
|
std::array<std::vector<Real>, 2> mKnot;
|
||
|
|
||
|
// For the integration-based least-squares fitting.
|
||
|
std::array<int, 2> mBasis, mIndex;
|
||
|
};
|
||
|
}
|