You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
236 lines
8.4 KiB
236 lines
8.4 KiB
3 months ago
|
// David Eberly, Geometric Tools, Redmond WA 98052
|
||
|
// Copyright (c) 1998-2021
|
||
|
// Distributed under the Boost Software License, Version 1.0.
|
||
|
// https://www.boost.org/LICENSE_1_0.txt
|
||
|
// https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
|
||
|
// Version: 4.0.2019.08.13
|
||
|
|
||
|
#pragma once
|
||
|
|
||
|
#include <Mathematics/ApprQuery.h>
|
||
|
#include <Mathematics/Array2.h>
|
||
|
#include <Mathematics/GMatrix.h>
|
||
|
#include <array>
|
||
|
|
||
|
// The samples are (x[i],y[i],w[i]) for 0 <= i < S. Think of w as a function
|
||
|
// of x and y, say w = f(x,y). The function fits the samples with a
|
||
|
// polynomial of degree d0 in x and degree d1 in y, say
|
||
|
// w = sum_{i=0}^{d0} sum_{j=0}^{d1} c[i][j]*x^i*y^j
|
||
|
// The method is a least-squares fitting algorithm. The mParameters stores
|
||
|
// c[i][j] = mParameters[i+(d0+1)*j] for a total of (d0+1)*(d1+1)
|
||
|
// coefficients. The observation type is std::array<Real,3>, which represents
|
||
|
// a triple (x,y,w).
|
||
|
//
|
||
|
// WARNING. The fitting algorithm for polynomial terms
|
||
|
// (1,x,x^2,...,x^d0), (1,y,y^2,...,y^d1)
|
||
|
// is known to be nonrobust for large degrees and for large magnitude data.
|
||
|
// One alternative is to use orthogonal polynomials
|
||
|
// (f[0](x),...,f[d0](x)), (g[0](y),...,g[d1](y))
|
||
|
// and apply the least-squares algorithm to these. Another alternative is to
|
||
|
// transform
|
||
|
// (x',y',w') = ((x-xcen)/rng, (y-ycen)/rng, w/rng)
|
||
|
// where xmin = min(x[i]), xmax = max(x[i]), xcen = (xmin+xmax)/2,
|
||
|
// ymin = min(y[i]), ymax = max(y[i]), ycen = (ymin+ymax)/2, and
|
||
|
// rng = max(xmax-xmin,ymax-ymin). Fit the (x',y',w') points,
|
||
|
// w' = sum_{i=0}^{d0} sum_{j=0}^{d1} c'[i][j]*(x')^i*(y')^j
|
||
|
// The original polynomial is evaluated as
|
||
|
// w = rng * sum_{i=0}^{d0} sum_{j=0}^{d1} c'[i][j] *
|
||
|
// ((x-xcen)/rng)^i * ((y-ycen)/rng)^j
|
||
|
|
||
|
namespace gte
|
||
|
{
|
||
|
template <typename Real>
|
||
|
class ApprPolynomial3 : public ApprQuery<Real, std::array<Real, 3>>
|
||
|
{
|
||
|
public:
|
||
|
// Initialize the model parameters to zero.
|
||
|
ApprPolynomial3(int xDegree, int yDegree)
|
||
|
:
|
||
|
mXDegree(xDegree),
|
||
|
mYDegree(yDegree),
|
||
|
mXDegreeP1(xDegree + 1),
|
||
|
mYDegreeP1(yDegree + 1),
|
||
|
mSize(mXDegreeP1 * mYDegreeP1),
|
||
|
mParameters(mSize, (Real)0),
|
||
|
mYCoefficient(mYDegreeP1, (Real)0)
|
||
|
{
|
||
|
mXDomain[0] = std::numeric_limits<Real>::max();
|
||
|
mXDomain[1] = -mXDomain[0];
|
||
|
mYDomain[0] = std::numeric_limits<Real>::max();
|
||
|
mYDomain[1] = -mYDomain[0];
|
||
|
}
|
||
|
|
||
|
// Basic fitting algorithm. See ApprQuery.h for the various Fit(...)
|
||
|
// functions that you can call.
|
||
|
virtual bool FitIndexed(
|
||
|
size_t numObservations, std::array<Real, 3> const* observations,
|
||
|
size_t numIndices, int const* indices) override
|
||
|
{
|
||
|
if (this->ValidIndices(numObservations, observations, numIndices, indices))
|
||
|
{
|
||
|
int s, i0, j0, k0, i1, j1, k1;
|
||
|
|
||
|
// Compute the powers of x and y.
|
||
|
int numSamples = static_cast<int>(numIndices);
|
||
|
int twoXDegree = 2 * mXDegree;
|
||
|
int twoYDegree = 2 * mYDegree;
|
||
|
Array2<Real> xPower(twoXDegree + 1, numSamples);
|
||
|
Array2<Real> yPower(twoYDegree + 1, numSamples);
|
||
|
for (s = 0; s < numSamples; ++s)
|
||
|
{
|
||
|
Real x = observations[indices[s]][0];
|
||
|
Real y = observations[indices[s]][1];
|
||
|
mXDomain[0] = std::min(x, mXDomain[0]);
|
||
|
mXDomain[1] = std::max(x, mXDomain[1]);
|
||
|
mYDomain[0] = std::min(y, mYDomain[0]);
|
||
|
mYDomain[1] = std::max(y, mYDomain[1]);
|
||
|
|
||
|
xPower[s][0] = (Real)1;
|
||
|
for (i0 = 1; i0 <= twoXDegree; ++i0)
|
||
|
{
|
||
|
xPower[s][i0] = x * xPower[s][i0 - 1];
|
||
|
}
|
||
|
|
||
|
yPower[s][0] = (Real)1;
|
||
|
for (j0 = 1; j0 <= twoYDegree; ++j0)
|
||
|
{
|
||
|
yPower[s][j0] = y * yPower[s][j0 - 1];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Matrix A is the Vandermonde matrix and vector B is the
|
||
|
// right-hand side of the linear system A*X = B.
|
||
|
GMatrix<Real> A(mSize, mSize);
|
||
|
GVector<Real> B(mSize);
|
||
|
for (j0 = 0; j0 <= mYDegree; ++j0)
|
||
|
{
|
||
|
for (i0 = 0; i0 <= mXDegree; ++i0)
|
||
|
{
|
||
|
Real sum = (Real)0;
|
||
|
k0 = i0 + mXDegreeP1 * j0;
|
||
|
for (s = 0; s < numSamples; ++s)
|
||
|
{
|
||
|
Real w = observations[indices[s]][2];
|
||
|
sum += w * xPower[s][i0] * yPower[s][j0];
|
||
|
}
|
||
|
|
||
|
B[k0] = sum;
|
||
|
|
||
|
for (j1 = 0; j1 <= mYDegree; ++j1)
|
||
|
{
|
||
|
for (i1 = 0; i1 <= mXDegree; ++i1)
|
||
|
{
|
||
|
sum = (Real)0;
|
||
|
k1 = i1 + mXDegreeP1 * j1;
|
||
|
for (s = 0; s < numSamples; ++s)
|
||
|
{
|
||
|
sum += xPower[s][i0 + i1] * yPower[s][j0 + j1];
|
||
|
}
|
||
|
|
||
|
A(k0, k1) = sum;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Solve for the polynomial coefficients.
|
||
|
GVector<Real> coefficients = Inverse(A) * B;
|
||
|
bool hasNonzero = false;
|
||
|
for (int i = 0; i < mSize; ++i)
|
||
|
{
|
||
|
mParameters[i] = coefficients[i];
|
||
|
if (coefficients[i] != (Real)0)
|
||
|
{
|
||
|
hasNonzero = true;
|
||
|
}
|
||
|
}
|
||
|
return hasNonzero;
|
||
|
}
|
||
|
|
||
|
std::fill(mParameters.begin(), mParameters.end(), (Real)0);
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
// Get the parameters for the best fit.
|
||
|
std::vector<Real> const& GetParameters() const
|
||
|
{
|
||
|
return mParameters;
|
||
|
}
|
||
|
|
||
|
virtual size_t GetMinimumRequired() const override
|
||
|
{
|
||
|
return static_cast<size_t>(mSize);
|
||
|
}
|
||
|
|
||
|
// Compute the model error for the specified observation for the
|
||
|
// current model parameters. The returned value for observation
|
||
|
// (x0,y0,w0) is |w(x0,y0) - w0|, where w(x,y) is the fitted
|
||
|
// polynomial.
|
||
|
virtual Real Error(std::array<Real, 3> const& observation) const override
|
||
|
{
|
||
|
Real w = Evaluate(observation[0], observation[1]);
|
||
|
Real error = std::fabs(w - observation[2]);
|
||
|
return error;
|
||
|
}
|
||
|
|
||
|
virtual void CopyParameters(ApprQuery<Real, std::array<Real, 3>> const* input) override
|
||
|
{
|
||
|
auto source = dynamic_cast<ApprPolynomial3 const*>(input);
|
||
|
if (source)
|
||
|
{
|
||
|
*this = *source;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Evaluate the polynomial. The domain intervals are provided so you
|
||
|
// can interpolate ((x,y) in domain) or extrapolate ((x,y) not in
|
||
|
// domain).
|
||
|
std::array<Real, 2> const& GetXDomain() const
|
||
|
{
|
||
|
return mXDomain;
|
||
|
}
|
||
|
|
||
|
std::array<Real, 2> const& GetYDomain() const
|
||
|
{
|
||
|
return mYDomain;
|
||
|
}
|
||
|
|
||
|
Real Evaluate(Real x, Real y) const
|
||
|
{
|
||
|
int i0, i1;
|
||
|
Real w;
|
||
|
|
||
|
for (i1 = 0; i1 <= mYDegree; ++i1)
|
||
|
{
|
||
|
i0 = mXDegree;
|
||
|
w = mParameters[i0 + mXDegreeP1 * i1];
|
||
|
while (--i0 >= 0)
|
||
|
{
|
||
|
w = mParameters[i0 + mXDegreeP1 * i1] + w * x;
|
||
|
}
|
||
|
mYCoefficient[i1] = w;
|
||
|
}
|
||
|
|
||
|
i1 = mYDegree;
|
||
|
w = mYCoefficient[i1];
|
||
|
while (--i1 >= 0)
|
||
|
{
|
||
|
w = mYCoefficient[i1] + w * y;
|
||
|
}
|
||
|
|
||
|
return w;
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
int mXDegree, mYDegree, mXDegreeP1, mYDegreeP1, mSize;
|
||
|
std::array<Real, 2> mXDomain, mYDomain;
|
||
|
std::vector<Real> mParameters;
|
||
|
|
||
|
// This array is used by Evaluate() to avoid reallocation of the
|
||
|
// 'vector' for each call. The member is mutable because, to the
|
||
|
// user, the call to Evaluate does not modify the polynomial.
|
||
|
mutable std::vector<Real> mYCoefficient;
|
||
|
};
|
||
|
|
||
|
}
|