You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
			
				
					136 lines
				
				4.5 KiB
			
		
		
			
		
	
	
					136 lines
				
				4.5 KiB
			| 
											10 months ago
										 | // David Eberly, Geometric Tools, Redmond WA 98052
 | ||
|  | // Copyright (c) 1998-2021
 | ||
|  | // Distributed under the Boost Software License, Version 1.0.
 | ||
|  | // https://www.boost.org/LICENSE_1_0.txt
 | ||
|  | // https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
 | ||
|  | // Version: 4.0.2019.08.13
 | ||
|  | 
 | ||
|  | #pragma once
 | ||
|  | 
 | ||
|  | #include <Mathematics/Math.h>
 | ||
|  | 
 | ||
|  | // Minimax polynomial approximations to atan(x).  The polynomial p(x) of
 | ||
|  | // degree D has only odd-power terms, is required to have linear term x,
 | ||
|  | // and p(1) = atan(1) = pi/4.  It minimizes the quantity
 | ||
|  | // maximum{|atan(x) - p(x)| : x in [-1,1]} over all polynomials of
 | ||
|  | // degree D subject to the constraints mentioned.
 | ||
|  | 
 | ||
|  | namespace gte | ||
|  | { | ||
|  |     template <typename Real> | ||
|  |     class ATanEstimate | ||
|  |     { | ||
|  |     public: | ||
|  |         // The input constraint is x in [-1,1].  For example,
 | ||
|  |         //   float x; // in [-1,1]
 | ||
|  |         //   float result = ATanEstimate<float>::Degree<3>(x);
 | ||
|  |         template <int D> | ||
|  |         inline static Real Degree(Real x) | ||
|  |         { | ||
|  |             return Evaluate(degree<D>(), x); | ||
|  |         } | ||
|  | 
 | ||
|  |         // The input x can be any real number.  Range reduction is used via
 | ||
|  |         // the identities atan(x) = pi/2 - atan(1/x) for x > 0, and
 | ||
|  |         // atan(x) = -pi/2 - atan(1/x) for x < 0.  For example,
 | ||
|  |         //   float x;  // x any real number
 | ||
|  |         //   float result = ATanEstimate<float>::DegreeRR<3>(x);
 | ||
|  |         template <int D> | ||
|  |         inline static Real DegreeRR(Real x) | ||
|  |         { | ||
|  |             if (std::fabs(x) <= (Real)1) | ||
|  |             { | ||
|  |                 return Degree<D>(x); | ||
|  |             } | ||
|  |             else if (x > (Real)1) | ||
|  |             { | ||
|  |                 return (Real)GTE_C_HALF_PI - Degree<D>((Real)1 / x); | ||
|  |             } | ||
|  |             else | ||
|  |             { | ||
|  |                 return (Real)-GTE_C_HALF_PI - Degree<D>((Real)1 / x); | ||
|  |             } | ||
|  |         } | ||
|  | 
 | ||
|  |     private: | ||
|  |         // Metaprogramming and private implementation to allow specialization
 | ||
|  |         // of a template member function.
 | ||
|  |         template <int D> struct degree {}; | ||
|  | 
 | ||
|  |         inline static Real Evaluate(degree<3>, Real x) | ||
|  |         { | ||
|  |             Real xsqr = x * x; | ||
|  |             Real poly; | ||
|  |             poly = (Real)GTE_C_ATAN_DEG3_C1; | ||
|  |             poly = (Real)GTE_C_ATAN_DEG3_C0 + poly * xsqr; | ||
|  |             poly = poly * x; | ||
|  |             return poly; | ||
|  |         } | ||
|  | 
 | ||
|  |         inline static Real Evaluate(degree<5>, Real x) | ||
|  |         { | ||
|  |             Real xsqr = x * x; | ||
|  |             Real poly; | ||
|  |             poly = (Real)GTE_C_ATAN_DEG5_C2; | ||
|  |             poly = (Real)GTE_C_ATAN_DEG5_C1 + poly * xsqr; | ||
|  |             poly = (Real)GTE_C_ATAN_DEG5_C0 + poly * xsqr; | ||
|  |             poly = poly * x; | ||
|  |             return poly; | ||
|  |         } | ||
|  | 
 | ||
|  |         inline static Real Evaluate(degree<7>, Real x) | ||
|  |         { | ||
|  |             Real xsqr = x * x; | ||
|  |             Real poly; | ||
|  |             poly = (Real)GTE_C_ATAN_DEG7_C3; | ||
|  |             poly = (Real)GTE_C_ATAN_DEG7_C2 + poly * xsqr; | ||
|  |             poly = (Real)GTE_C_ATAN_DEG7_C1 + poly * xsqr; | ||
|  |             poly = (Real)GTE_C_ATAN_DEG7_C0 + poly * xsqr; | ||
|  |             poly = poly * x; | ||
|  |             return poly; | ||
|  |         } | ||
|  | 
 | ||
|  |         inline static Real Evaluate(degree<9>, Real x) | ||
|  |         { | ||
|  |             Real xsqr = x * x; | ||
|  |             Real poly; | ||
|  |             poly = (Real)GTE_C_ATAN_DEG9_C4; | ||
|  |             poly = (Real)GTE_C_ATAN_DEG9_C3 + poly * xsqr; | ||
|  |             poly = (Real)GTE_C_ATAN_DEG9_C2 + poly * xsqr; | ||
|  |             poly = (Real)GTE_C_ATAN_DEG9_C1 + poly * xsqr; | ||
|  |             poly = (Real)GTE_C_ATAN_DEG9_C0 + poly * xsqr; | ||
|  |             poly = poly * x; | ||
|  |             return poly; | ||
|  |         } | ||
|  | 
 | ||
|  |         inline static Real Evaluate(degree<11>, Real x) | ||
|  |         { | ||
|  |             Real xsqr = x * x; | ||
|  |             Real poly; | ||
|  |             poly = (Real)GTE_C_ATAN_DEG11_C5; | ||
|  |             poly = (Real)GTE_C_ATAN_DEG11_C4 + poly * xsqr; | ||
|  |             poly = (Real)GTE_C_ATAN_DEG11_C3 + poly * xsqr; | ||
|  |             poly = (Real)GTE_C_ATAN_DEG11_C2 + poly * xsqr; | ||
|  |             poly = (Real)GTE_C_ATAN_DEG11_C1 + poly * xsqr; | ||
|  |             poly = (Real)GTE_C_ATAN_DEG11_C0 + poly * xsqr; | ||
|  |             poly = poly * x; | ||
|  |             return poly; | ||
|  |         } | ||
|  | 
 | ||
|  |         inline static Real Evaluate(degree<13>, Real x) | ||
|  |         { | ||
|  |             Real xsqr = x * x; | ||
|  |             Real poly; | ||
|  |             poly = (Real)GTE_C_ATAN_DEG13_C6; | ||
|  |             poly = (Real)GTE_C_ATAN_DEG13_C5 + poly * xsqr; | ||
|  |             poly = (Real)GTE_C_ATAN_DEG13_C4 + poly * xsqr; | ||
|  |             poly = (Real)GTE_C_ATAN_DEG13_C3 + poly * xsqr; | ||
|  |             poly = (Real)GTE_C_ATAN_DEG13_C2 + poly * xsqr; | ||
|  |             poly = (Real)GTE_C_ATAN_DEG13_C1 + poly * xsqr; | ||
|  |             poly = (Real)GTE_C_ATAN_DEG13_C0 + poly * xsqr; | ||
|  |             poly = poly * x; | ||
|  |             return poly; | ||
|  |         } | ||
|  |     }; | ||
|  | } |