You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

254 lines
9.4 KiB

// David Eberly, Geometric Tools, Redmond WA 98052
// Copyright (c) 1998-2021
// Distributed under the Boost Software License, Version 1.0.
// https://www.boost.org/LICENSE_1_0.txt
// https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
// Version: 4.0.2020.01.10
#pragma once
#include <Mathematics/Vector.h>
namespace gte
{
// Template alias for convenience.
template <typename Real>
using Vector2 = Vector<2, Real>;
// Compute the perpendicular using the formal determinant,
// perp = det{{e0,e1},{x0,x1}} = (x1,-x0)
// where e0 = (1,0), e1 = (0,1), and v = (x0,x1).
template <typename Real>
Vector2<Real> Perp(Vector2<Real> const& v)
{
return Vector2<Real>{ v[1], -v[0] };
}
// Compute the normalized perpendicular.
template <typename Real>
Vector2<Real> UnitPerp(Vector2<Real> const& v, bool robust = false)
{
Vector2<Real> unitPerp{ v[1], -v[0] };
Normalize(unitPerp, robust);
return unitPerp;
}
// Compute Dot((x0,x1),Perp(y0,y1)) = x0*y1 - x1*y0, where v0 = (x0,x1)
// and v1 = (y0,y1).
template <typename Real>
Real DotPerp(Vector2<Real> const& v0, Vector2<Real> const& v1)
{
return Dot(v0, Perp(v1));
}
// Compute a right-handed orthonormal basis for the orthogonal complement
// of the input vectors. The function returns the smallest length of the
// unnormalized vectors computed during the process. If this value is
// nearly zero, it is possible that the inputs are linearly dependent
// (within numerical round-off errors). On input, numInputs must be 1 and
// v[0] must be initialized. On output, the vectors v[0] and v[1] form an
// orthonormal set.
template <typename Real>
Real ComputeOrthogonalComplement(int numInputs, Vector2<Real>* v, bool robust = false)
{
if (numInputs == 1)
{
v[1] = -Perp(v[0]);
return Orthonormalize<2, Real>(2, v, robust);
}
return (Real)0;
}
// Compute the barycentric coordinates of the point P with respect to the
// triangle <V0,V1,V2>, P = b0*V0 + b1*V1 + b2*V2, where b0 + b1 + b2 = 1.
// The return value is 'true' iff {V0,V1,V2} is a linearly independent
// set. Numerically, this is measured by |det[V0 V1 V2]| <= epsilon. The
// values bary[] are valid only when the return value is 'true' but set to
// zero when the return value is 'false'.
template <typename Real>
bool ComputeBarycentrics(Vector2<Real> const& p, Vector2<Real> const& v0,
Vector2<Real> const& v1, Vector2<Real> const& v2, Real bary[3],
Real epsilon = (Real)0)
{
// Compute the vectors relative to V2 of the triangle.
Vector2<Real> diff[3] = { v0 - v2, v1 - v2, p - v2 };
Real det = DotPerp(diff[0], diff[1]);
if (det < -epsilon || det > epsilon)
{
Real invDet = (Real)1 / det;
bary[0] = DotPerp(diff[2], diff[1]) * invDet;
bary[1] = DotPerp(diff[0], diff[2]) * invDet;
bary[2] = (Real)1 - bary[0] - bary[1];
return true;
}
for (int i = 0; i < 3; ++i)
{
bary[i] = (Real)0;
}
return false;
}
// Get intrinsic information about the input array of vectors. The return
// value is 'true' iff the inputs are valid (numVectors > 0, v is not
// null, and epsilon >= 0), in which case the class members are valid.
template <typename Real>
class IntrinsicsVector2
{
public:
// The constructor sets the class members based on the input set.
IntrinsicsVector2(int numVectors, Vector2<Real> const* v, Real inEpsilon)
:
epsilon(inEpsilon),
dimension(0),
maxRange((Real)0),
origin{ (Real)0, (Real)0 },
extremeCCW(false)
{
min[0] = (Real)0;
min[1] = (Real)0;
direction[0] = { (Real)0, (Real)0 };
direction[1] = { (Real)0, (Real)0 };
extreme[0] = 0;
extreme[1] = 0;
extreme[2] = 0;
if (numVectors > 0 && v && epsilon >= (Real)0)
{
// Compute the axis-aligned bounding box for the input
// vectors. Keep track of the indices into 'vectors' for the
// current min and max.
int j, indexMin[2], indexMax[2];
for (j = 0; j < 2; ++j)
{
min[j] = v[0][j];
max[j] = min[j];
indexMin[j] = 0;
indexMax[j] = 0;
}
int i;
for (i = 1; i < numVectors; ++i)
{
for (j = 0; j < 2; ++j)
{
if (v[i][j] < min[j])
{
min[j] = v[i][j];
indexMin[j] = i;
}
else if (v[i][j] > max[j])
{
max[j] = v[i][j];
indexMax[j] = i;
}
}
}
// Determine the maximum range for the bounding box.
maxRange = max[0] - min[0];
extreme[0] = indexMin[0];
extreme[1] = indexMax[0];
Real range = max[1] - min[1];
if (range > maxRange)
{
maxRange = range;
extreme[0] = indexMin[1];
extreme[1] = indexMax[1];
}
// The origin is either the vector of minimum x0-value or
// vector of minimum x1-value.
origin = v[extreme[0]];
// Test whether the vector set is (nearly) a vector.
if (maxRange <= epsilon)
{
dimension = 0;
for (j = 0; j < 2; ++j)
{
extreme[j + 1] = extreme[0];
}
return;
}
// Test whether the vector set is (nearly) a line segment. We
// need direction[1] to span the orthogonal complement of
// direction[0].
direction[0] = v[extreme[1]] - origin;
Normalize(direction[0], false);
direction[1] = -Perp(direction[0]);
// Compute the maximum distance of the points from the line
// origin+t*direction[0].
Real maxDistance = (Real)0;
Real maxSign = (Real)0;
extreme[2] = extreme[0];
for (i = 0; i < numVectors; ++i)
{
Vector2<Real> diff = v[i] - origin;
Real distance = Dot(direction[1], diff);
Real sign = (distance > (Real)0 ? (Real)1 :
(distance < (Real)0 ? (Real)-1 : (Real)0));
distance = std::fabs(distance);
if (distance > maxDistance)
{
maxDistance = distance;
maxSign = sign;
extreme[2] = i;
}
}
if (maxDistance <= epsilon * maxRange)
{
// The points are (nearly) on the line
// origin + t * direction[0].
dimension = 1;
extreme[2] = extreme[1];
return;
}
dimension = 2;
extremeCCW = (maxSign > (Real)0);
return;
}
}
// A nonnegative tolerance that is used to determine the intrinsic
// dimension of the set.
Real epsilon;
// The intrinsic dimension of the input set, computed based on the
// nonnegative tolerance mEpsilon.
int dimension;
// Axis-aligned bounding box of the input set. The maximum range is
// the larger of max[0]-min[0] and max[1]-min[1].
Real min[2], max[2];
Real maxRange;
// Coordinate system. The origin is valid for any dimension d. The
// unit-length direction vector is valid only for 0 <= i < d. The
// extreme index is relative to the array of input points, and is also
// valid only for 0 <= i < d. If d = 0, all points are effectively
// the same, but the use of an epsilon may lead to an extreme index
// that is not zero. If d = 1, all points effectively lie on a line
// segment. If d = 2, the points are not collinear.
Vector2<Real> origin;
Vector2<Real> direction[2];
// The indices that define the maximum dimensional extents. The
// values extreme[0] and extreme[1] are the indices for the points
// that define the largest extent in one of the coordinate axis
// directions. If the dimension is 2, then extreme[2] is the index
// for the point that generates the largest extent in the direction
// perpendicular to the line through the points corresponding to
// extreme[0] and extreme[1]. The triangle formed by the points
// V[extreme[0]], V[extreme[1]], and V[extreme[2]] is clockwise or
// counterclockwise, the condition stored in extremeCCW.
int extreme[3];
bool extremeCCW;
};
}