You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

374 lines
13 KiB

// David Eberly, Geometric Tools, Redmond WA 98052
// Copyright (c) 1998-2021
// Distributed under the Boost Software License, Version 1.0.
// https://www.boost.org/LICENSE_1_0.txt
// https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
// Version: 4.0.2019.08.13
#pragma once
#include <Mathematics/Math.h>
#include <algorithm>
#include <array>
#include <cstdint>
#include <cstring>
#include <functional>
#include <vector>
// An implementation of the QR algorithm described in "Matrix Computations,
// 2nd edition" by G. H. Golub and C. F. Van Loan, The Johns Hopkins
// University Press, Baltimore MD, Fourth Printing 1993. In particular,
// the implementation is based on Chapter 7 (The Unsymmetric Eigenvalue
// Problem), Section 7.5 (The Practical QR Algorithm).
namespace gte
{
template <typename Real>
class UnsymmetricEigenvalues
{
public:
// The solver processes NxN matrices (not necessarily symmetric),
// where N >= 3 ('size' is N) and the matrix is stored in row-major
// order. The maximum number of iterations ('maxIterations') must
// be specified for reducing an upper Hessenberg matrix to an upper
// quasi-triangular matrix (upper triangular matrix of blocks where
// the diagonal blocks are 1x1 or 2x2). The goal is to compute the
// real-valued eigenvalues.
UnsymmetricEigenvalues(int32_t size, uint32_t maxIterations)
:
mSize(0),
mSizeM1(0),
mMaxIterations(0),
mNumEigenvalues(0)
{
if (size >= 3 && maxIterations > 0)
{
mSize = size;
mSizeM1 = size - 1;
mMaxIterations = maxIterations;
mMatrix.resize(size * size);
mX.resize(size);
mV.resize(size);
mScaledV.resize(size);
mW.resize(size);
mFlagStorage.resize(size + 1);
std::fill(mFlagStorage.begin(), mFlagStorage.end(), 0);
mSubdiagonalFlag = &mFlagStorage[1];
mEigenvalues.resize(mSize);
}
}
// A copy of the NxN input is made internally. The order of the
// eigenvalues is specified by sortType: -1 (decreasing), 0 (no
// sorting), or +1 (increasing). When sorted, the eigenvectors are
// ordered accordingly. The return value is the number of iterations
// consumed when convergence occurred, 0xFFFFFFFF when convergence did
// not occur, or 0 when N <= 1 was passed to the constructor.
uint32_t Solve(Real const* input, int32_t sortType)
{
if (mSize > 0)
{
std::copy(input, input + mSize * mSize, mMatrix.begin());
ReduceToUpperHessenberg();
std::array<int, 2> block;
bool found = GetBlock(block);
uint32_t numIterations;
for (numIterations = 0; numIterations < mMaxIterations; ++numIterations)
{
if (found)
{
// Solve the current subproblem.
FrancisQRStep(block[0], block[1] + 1);
// Find another subproblem (if any).
found = GetBlock(block);
}
else
{
break;
}
}
// The matrix is fully uncoupled, upper Hessenberg with 1x1 or
// 2x2 diagonal blocks. Golub and Van Loan call this "upper
// quasi-triangular".
mNumEigenvalues = 0;
std::fill(mEigenvalues.begin(), mEigenvalues.end(), (Real)0);
for (int i = 0; i < mSizeM1; ++i)
{
if (mSubdiagonalFlag[i] == 0)
{
if (mSubdiagonalFlag[i - 1] == 0)
{
// We have a 1x1 block with a real eigenvalue.
mEigenvalues[mNumEigenvalues++] = A(i, i);
}
}
else
{
if (mSubdiagonalFlag[i - 1] == 0 && mSubdiagonalFlag[i + 1] == 0)
{
// We have a 2x2 block that might have real
// eigenvalues.
Real a00 = A(i, i);
Real a01 = A(i, i + 1);
Real a10 = A(i + 1, i);
Real a11 = A(i + 1, i + 1);
Real tr = a00 + a11;
Real det = a00 * a11 - a01 * a10;
Real halfTr = tr * (Real)0.5;
Real discr = halfTr * halfTr - det;
if (discr >= (Real)0)
{
Real rootDiscr = std::sqrt(discr);
mEigenvalues[mNumEigenvalues++] = halfTr - rootDiscr;
mEigenvalues[mNumEigenvalues++] = halfTr + rootDiscr;
}
}
// else:
// The QR iteration failed to converge at this block.
// It must also be the case that
// numIterations == mMaxIterations. TODO: The caller
// will be aware of this when testing the returned
// numIterations. Is there a remedy for such a case?
// This happened with root finding using the companion
// matrix of a polynomial.)
}
}
if (sortType != 0 && mNumEigenvalues > 1)
{
if (sortType > 0)
{
std::sort(mEigenvalues.begin(),
mEigenvalues.begin() + mNumEigenvalues, std::less<Real>());
}
else
{
std::sort(mEigenvalues.begin(),
mEigenvalues.begin() + mNumEigenvalues, std::greater<Real>());
}
}
return numIterations;
}
return 0;
}
// Get the real-valued eigenvalues of the matrix passed to Solve(...).
// The input 'eigenvalues' must have at least N elements.
void GetEigenvalues(uint32_t& numEigenvalues, Real* eigenvalues) const
{
if (mSize > 0)
{
numEigenvalues = mNumEigenvalues;
std::memcpy(eigenvalues, mEigenvalues.data(), numEigenvalues * sizeof(Real));
}
else
{
numEigenvalues = 0;
}
}
private:
// 2D accessors to elements of mMatrix[].
inline Real const& A(int r, int c) const
{
return mMatrix[c + r * mSize];
}
inline Real& A(int r, int c)
{
return mMatrix[c + r * mSize];
}
// Compute the Householder vector for (X[rmin],...,x[rmax]). The
// input vector is stored in mX in the index range [rmin,rmax]. The
// output vector V is stored in mV in the index range [rmin,rmax].
// The scaled vector is S = (-2/Dot(V,V))*V and is stored in mScaledV
// in the index range [rmin,rmax].
void House(int rmin, int rmax)
{
Real length = (Real)0;
for (int r = rmin; r <= rmax; ++r)
{
length += mX[r] * mX[r];
}
length = std::sqrt(length);
if (length != (Real)0)
{
Real sign = (mX[rmin] >= (Real)0 ? (Real)1 : (Real)-1);
Real invDenom = (Real)1 / (mX[rmin] + sign * length);
for (int r = rmin + 1; r <= rmax; ++r)
{
mV[r] = mX[r] * invDenom;
}
}
mV[rmin] = (Real)1;
Real dot = (Real)1;
for (int r = rmin + 1; r <= rmax; ++r)
{
dot += mV[r] * mV[r];
}
Real scale = (Real)-2 / dot;
for (int r = rmin; r <= rmax; ++r)
{
mScaledV[r] = scale * mV[r];
}
}
// Support for replacing matrix A by P^T*A*P, where P is a Householder
// reflection computed using House(...).
void RowHouse(int rmin, int rmax, int cmin, int cmax)
{
for (int c = cmin; c <= cmax; ++c)
{
mW[c] = (Real)0;
for (int r = rmin; r <= rmax; ++r)
{
mW[c] += mScaledV[r] * A(r, c);
}
}
for (int r = rmin; r <= rmax; ++r)
{
for (int c = cmin; c <= cmax; ++c)
{
A(r, c) += mV[r] * mW[c];
}
}
}
void ColHouse(int rmin, int rmax, int cmin, int cmax)
{
for (int r = rmin; r <= rmax; ++r)
{
mW[r] = (Real)0;
for (int c = cmin; c <= cmax; ++c)
{
mW[r] += mScaledV[c] * A(r, c);
}
}
for (int r = rmin; r <= rmax; ++r)
{
for (int c = cmin; c <= cmax; ++c)
{
A(r, c) += mW[r] * mV[c];
}
}
}
void ReduceToUpperHessenberg()
{
for (int c = 0, cp1 = 1; c <= mSize - 3; ++c, ++cp1)
{
for (int r = cp1; r <= mSizeM1; ++r)
{
mX[r] = A(r, c);
}
House(cp1, mSizeM1);
RowHouse(cp1, mSizeM1, c, mSizeM1);
ColHouse(0, mSizeM1, cp1, mSizeM1);
}
}
void FrancisQRStep(int rmin, int rmax)
{
// Apply the double implicit shift step.
int const i0 = rmax - 1, i1 = rmax;
Real a00 = A(i0, i0);
Real a01 = A(i0, i1);
Real a10 = A(i1, i0);
Real a11 = A(i1, i1);
Real tr = a00 + a11;
Real det = a00 * a11 - a01 * a10;
int const j0 = rmin, j1 = j0 + 1, j2 = j1 + 1;
Real b00 = A(j0, j0);
Real b01 = A(j0, j1);
Real b10 = A(j1, j0);
Real b11 = A(j1, j1);
Real b21 = A(j2, j1);
mX[rmin] = b00 * (b00 - tr) + b01 * b10 + det;
mX[rmin + 1] = b10 * (b00 + b11 - tr);
mX[rmin + 2] = b10 * b21;
House(rmin, rmin + 2);
RowHouse(rmin, rmin + 2, rmin, rmax);
ColHouse(rmin, std::min(rmax, rmin + 3), rmin, rmin + 2);
// Apply Householder reflections to restore the matrix to upper
// Hessenberg form.
for (int c = 0, cp1 = 1; c <= mSize - 3; ++c, ++cp1)
{
int kmax = std::min(cp1 + 2, mSizeM1);
for (int r = cp1; r <= kmax; ++r)
{
mX[r] = A(r, c);
}
House(cp1, kmax);
RowHouse(cp1, kmax, c, mSizeM1);
ColHouse(0, mSizeM1, cp1, kmax);
}
}
bool GetBlock(std::array<int, 2>& block)
{
for (int i = 0; i < mSizeM1; ++i)
{
Real a00 = A(i, i);
Real a11 = A(i + 1, i + 1);
Real a21 = A(i + 1, i);
Real sum0 = a00 + a11;
Real sum1 = sum0 + a21;
mSubdiagonalFlag[i] = (sum1 != sum0 ? 1 : 0);
}
for (int i = 0; i < mSizeM1; ++i)
{
if (mSubdiagonalFlag[i] == 1)
{
block = { i, -1 };
while (i < mSizeM1 && mSubdiagonalFlag[i] == 1)
{
block[1] = i++;
}
if (block[1] != block[0])
{
return true;
}
}
}
return false;
}
// The number N of rows and columns of the matrices to be processed.
int32_t mSize, mSizeM1;
// The maximum number of iterations for reducing the tridiagonal
// matrix to a diagonal matrix.
uint32_t mMaxIterations;
// The internal copy of a matrix passed to the solver.
std::vector<Real> mMatrix; // NxN elements
// Temporary storage to compute Householder reflections.
std::vector<Real> mX, mV, mScaledV, mW; // N elements
// Flags about the zeroness of the subdiagonal entries. This is used
// to detect uncoupled submatrices and apply the QR algorithm to the
// corresponding subproblems. The storage is padded on both ends with
// zeros to avoid additional code logic when packing the eigenvalues
// for access by the caller.
std::vector<int> mFlagStorage;
int* mSubdiagonalFlag;
int mNumEigenvalues;
std::vector<Real> mEigenvalues;
};
}