You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

1241 lines
47 KiB

// David Eberly, Geometric Tools, Redmond WA 98052
// Copyright (c) 1998-2021
// Distributed under the Boost Software License, Version 1.0.
// https://www.boost.org/LICENSE_1_0.txt
// https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
// Version: 4.0.2020.10.26
#pragma once
#include <Mathematics/Logger.h>
#include <Mathematics/PolygonTree.h>
#include <Mathematics/PrimalQuery2.h>
#include <memory>
#include <map>
#include <queue>
#include <vector>
// Triangulate polygons using ear clipping. The algorithm is described in
// https://www.geometrictools.com/Documentation/TriangulationByEarClipping.pdf
// The algorithm for processing nested polygons involves a division, so the
// ComputeType must be rational-based, say, BSRational. If you process only
// triangles that are simple, you may use BSNumber for the ComputeType.
namespace gte
{
template <typename InputType, typename ComputeType>
class TriangulateEC
{
public:
// The fundamental problem is to compute the triangulation of a
// polygon tree. The outer polygons have counterclockwise ordered
// vertices. The inner polygons have clockwise ordered vertices.
typedef std::vector<int> Polygon;
// The class is a functor to support triangulating multiple polygons
// that share vertices in a collection of points. The interpretation
// of 'numPoints' and 'points' is described before each operator()
// function. Preconditions are numPoints >= 3 and points is a nonnull
// pointer to an array of at least numPoints elements. If the
// preconditions are satisfied, then operator() functions will return
// 'true'; otherwise, they return 'false'.
TriangulateEC(int numPoints, Vector2<InputType> const* points)
:
mNumPoints(numPoints),
mPoints(points),
mCFirst(-1),
mCLast(-1),
mRFirst(-1),
mRLast(-1),
mEFirst(-1),
mELast(-1)
{
LogAssert(numPoints >= 3 && points != nullptr, "Invalid input.");
mComputePoints.resize(mNumPoints);
mIsConverted.resize(mNumPoints);
std::fill(mIsConverted.begin(), mIsConverted.end(), false);
mQuery.Set(mNumPoints, &mComputePoints[0]);
}
TriangulateEC(std::vector<Vector2<InputType>> const& points)
:
mNumPoints(static_cast<int>(points.size())),
mPoints(points.data()),
mCFirst(-1),
mCLast(-1),
mRFirst(-1),
mRLast(-1),
mEFirst(-1),
mELast(-1)
{
LogAssert(mNumPoints >= 3 && mPoints != nullptr, "Invalid input.");
mComputePoints.resize(mNumPoints);
mIsConverted.resize(mNumPoints);
std::fill(mIsConverted.begin(), mIsConverted.end(), false);
mQuery.Set(mNumPoints, &mComputePoints[0]);
}
// Access the triangulation after each operator() call.
inline std::vector<std::array<int, 3>> const& GetTriangles() const
{
return mTriangles;
}
// The input 'points' represents an array of vertices for a simple
// polygon. The vertices are points[0] through points[numPoints-1] and
// are listed in counterclockwise order.
bool operator()()
{
mTriangles.clear();
if (mPoints)
{
// Compute the points for the queries.
for (int i = 0; i < mNumPoints; ++i)
{
if (!mIsConverted[i])
{
mIsConverted[i] = true;
for (int j = 0; j < 2; ++j)
{
mComputePoints[i][j] = mPoints[i][j];
}
}
}
// Triangulate the unindexed polygon.
InitializeVertices(mNumPoints, nullptr);
DoEarClipping(mNumPoints, nullptr);
return true;
}
else
{
return false;
}
}
// The input 'points' represents an array of vertices that contains
// the vertices of a simple polygon.
bool operator()(Polygon const& polygon)
{
mTriangles.clear();
if (mPoints)
{
// Compute the points for the queries.
int const numIndices = static_cast<int>(polygon.size());
int const* indices = polygon.data();
for (int i = 0; i < numIndices; ++i)
{
int index = indices[i];
if (!mIsConverted[index])
{
mIsConverted[index] = true;
for (int j = 0; j < 2; ++j)
{
mComputePoints[index][j] = mPoints[index][j];
}
}
}
// Triangulate the indexed polygon.
InitializeVertices(numIndices, indices);
DoEarClipping(numIndices, indices);
return true;
}
else
{
return false;
}
}
// The input 'points' is a shared array of vertices that contains the
// vertices for two simple polygons, an outer polygon and an inner
// polygon. The inner polygon must be strictly inside the outer
// polygon.
bool operator()(Polygon const& outer, Polygon const& inner)
{
mTriangles.clear();
if (mPoints)
{
// Two extra elements are needed to duplicate the endpoints of
// the edge introduced to combine outer and inner polygons.
int numPointsPlusExtras = mNumPoints + 2;
if (numPointsPlusExtras > static_cast<int>(mComputePoints.size()))
{
mComputePoints.resize(numPointsPlusExtras);
mIsConverted.resize(numPointsPlusExtras);
mIsConverted[mNumPoints] = false;
mIsConverted[mNumPoints + 1] = false;
mQuery.Set(numPointsPlusExtras, &mComputePoints[0]);
}
// Convert any points that have not been encountered in other
// triangulation calls.
int const numOuterIndices = static_cast<int>(outer.size());
int const* outerIndices = outer.data();
for (int i = 0; i < numOuterIndices; ++i)
{
int index = outerIndices[i];
if (!mIsConverted[index])
{
mIsConverted[index] = true;
for (int j = 0; j < 2; ++j)
{
mComputePoints[index][j] = mPoints[index][j];
}
}
}
int const numInnerIndices = static_cast<int>(inner.size());
int const* innerIndices = inner.data();
for (int i = 0; i < numInnerIndices; ++i)
{
int index = innerIndices[i];
if (!mIsConverted[index])
{
mIsConverted[index] = true;
for (int j = 0; j < 2; ++j)
{
mComputePoints[index][j] = mPoints[index][j];
}
}
}
// Combine the outer polygon and the inner polygon into a
// simple polygon by inserting two edges connecting mutually
// visible vertices, one from the outer polygon and one from
// the inner polygon.
int nextElement = mNumPoints; // The next available element.
std::map<int, int> indexMap;
std::vector<int> combined;
if (!CombinePolygons(nextElement, outer, inner, indexMap, combined))
{
// An unexpected condition was encountered.
return false;
}
// The combined polygon is now in the format of a simple
// polygon, albeit one with coincident edges.
int numVertices = static_cast<int>(combined.size());
int* const indices = &combined[0];
InitializeVertices(numVertices, indices);
DoEarClipping(numVertices, indices);
// Map the duplicate indices back to the original indices.
RemapIndices(indexMap);
return true;
}
else
{
return false;
}
}
// The input 'points' is a shared array of vertices that contains the
// vertices for multiple simple polygons, an outer polygon and one or
// more inner polygons. The inner polygons must be nonoverlapping and
// strictly inside the outer polygon.
bool operator()(Polygon const& outer, std::vector<Polygon> const& inners)
{
mTriangles.clear();
if (mPoints)
{
// Two extra elements per inner polygon are needed to
// duplicate the endpoints of the edges introduced to combine
// outer and inner polygons.
int numPointsPlusExtras = mNumPoints + 2 * (int)inners.size();
if (numPointsPlusExtras > static_cast<int>(mComputePoints.size()))
{
mComputePoints.resize(numPointsPlusExtras);
mIsConverted.resize(numPointsPlusExtras);
for (int i = mNumPoints; i < numPointsPlusExtras; ++i)
{
mIsConverted[i] = false;
}
mQuery.Set(numPointsPlusExtras, &mComputePoints[0]);
}
// Convert any points that have not been encountered in other
// triangulation calls.
int const numOuterIndices = static_cast<int>(outer.size());
int const* outerIndices = outer.data();
for (int i = 0; i < numOuterIndices; ++i)
{
int index = outerIndices[i];
if (!mIsConverted[index])
{
mIsConverted[index] = true;
for (int j = 0; j < 2; ++j)
{
mComputePoints[index][j] = mPoints[index][j];
}
}
}
for (auto const& inner : inners)
{
int const numInnerIndices = static_cast<int>(inner.size());
int const* innerIndices = inner.data();
for (int i = 0; i < numInnerIndices; ++i)
{
int index = innerIndices[i];
if (!mIsConverted[index])
{
mIsConverted[index] = true;
for (int j = 0; j < 2; ++j)
{
mComputePoints[index][j] = mPoints[index][j];
}
}
}
}
// Combine the outer polygon and the inner polygons into a
// simple polygon by inserting two edges per inner polygon
// connecting mutually visible vertices.
int nextElement = mNumPoints; // The next available element.
std::map<int, int> indexMap;
std::vector<int> combined;
if (!ProcessOuterAndInners(nextElement, outer, inners, indexMap, combined))
{
// An unexpected condition was encountered.
return false;
}
// The combined polygon is now in the format of a simple
// polygon, albeit with coincident edges.
int numVertices = static_cast<int>(combined.size());
int* const indices = &combined[0];
InitializeVertices(numVertices, indices);
DoEarClipping(numVertices, indices);
// Map the duplicate indices back to the original indices.
RemapIndices(indexMap);
return true;
}
else
{
return false;
}
}
// The input 'positions' is a shared array of vertices that contains
// the vertices for multiple simple polygons in a tree of polygons.
bool operator()(std::shared_ptr<PolygonTree> const& tree)
{
mTriangles.clear();
if (mPoints)
{
// Two extra elements per inner polygon are needed to
// duplicate the endpoints of the edges introduced to combine
// outer and inner polygons.
int numPointsPlusExtras = mNumPoints + InitializeFromTree(tree);
if (numPointsPlusExtras > static_cast<int>(mComputePoints.size()))
{
mComputePoints.resize(numPointsPlusExtras);
mIsConverted.resize(numPointsPlusExtras);
for (int i = mNumPoints; i < numPointsPlusExtras; ++i)
{
mIsConverted[i] = false;
}
mQuery.Set(numPointsPlusExtras, &mComputePoints[0]);
}
int nextElement = mNumPoints;
std::map<int, int> indexMap;
std::queue<std::shared_ptr<PolygonTree>> treeQueue;
treeQueue.push(tree);
while (treeQueue.size() > 0)
{
std::shared_ptr<PolygonTree> outer = treeQueue.front();
treeQueue.pop();
int numChildren = static_cast<int>(outer->child.size());
int numVertices;
int const* indices;
if (numChildren == 0)
{
// The outer polygon is a simple polygon (no nested
// inner polygons). Triangulate the simple polygon.
numVertices = static_cast<int>(outer->polygon.size());
indices = outer->polygon.data();
InitializeVertices(numVertices, indices);
DoEarClipping(numVertices, indices);
}
else
{
// Place the next level of outer polygon nodes on the
// queue for triangulation.
std::vector<Polygon> inners(numChildren);
for (int c = 0; c < numChildren; ++c)
{
std::shared_ptr<PolygonTree> inner = outer->child[c];
inners[c] = inner->polygon;
int numGrandChildren = static_cast<int>(inner->child.size());
for (int g = 0; g < numGrandChildren; ++g)
{
treeQueue.push(inner->child[g]);
}
}
// Combine the outer polygon and the inner polygons
// into a simple polygon by inserting two edges per
// inner polygon connecting mutually visible vertices.
std::vector<int> combined;
ProcessOuterAndInners(nextElement, outer->polygon, inners, indexMap, combined);
// The combined polygon is now in the format of a
// simple polygon, albeit with coincident edges.
numVertices = static_cast<int>(combined.size());
indices = &combined[0];
InitializeVertices(numVertices, indices);
DoEarClipping(numVertices, indices);
}
}
// Map the duplicate indices back to the original indices.
RemapIndices(indexMap);
return true;
}
else
{
return false;
}
}
private:
// Create the vertex objects that store the various lists required by
// the ear-clipping algorithm.
void InitializeVertices(int numVertices, int const* indices)
{
mVertices.clear();
mVertices.resize(numVertices);
mCFirst = -1;
mCLast = -1;
mRFirst = -1;
mRLast = -1;
mEFirst = -1;
mELast = -1;
// Create a circular list of the polygon vertices for dynamic
// removal of vertices.
int numVerticesM1 = numVertices - 1;
for (int i = 0; i <= numVerticesM1; ++i)
{
Vertex& vertex = V(i);
vertex.index = (indices ? indices[i] : i);
vertex.vPrev = (i > 0 ? i - 1 : numVerticesM1);
vertex.vNext = (i < numVerticesM1 ? i + 1 : 0);
}
// Create a circular list of the polygon vertices for dynamic
// removal of vertices. Keep track of two linear sublists, one
// for the convex vertices and one for the reflex vertices.
// This is an O(N) process where N is the number of polygon
// vertices.
for (int i = 0; i <= numVerticesM1; ++i)
{
if (IsConvex(i))
{
InsertAfterC(i);
}
else
{
InsertAfterR(i);
}
}
}
// Apply ear clipping to the input polygon. Polygons with holes are
// preprocessed to obtain an index array that is nearly a simple
// polygon. This outer polygon has a pair of coincident edges per
// inner polygon.
void DoEarClipping(int numVertices, int const* indices)
{
// If the polygon is convex, just create a triangle fan.
if (mRFirst == -1)
{
int numVerticesM1 = numVertices - 1;
if (indices)
{
for (int i = 1; i < numVerticesM1; ++i)
{
mTriangles.push_back( { indices[0], indices[i], indices[i + 1] } );
}
}
else
{
for (int i = 1; i < numVerticesM1; ++i)
{
mTriangles.push_back( { 0, i, i + 1 } );
}
}
return;
}
// Identify the ears and build a circular list of them. Let V0,
// V1, and V2 be consecutive vertices forming a triangle T. The
// vertex V1 is an ear if no other vertices of the polygon lie
// inside T. Although it is enough to show that V1 is not an ear
// by finding at least one other vertex inside T, it is sufficient
// to search only the reflex vertices. This is an O(C*R) process,
// where C is the number of convex vertices and R is the number of
// reflex vertices with N = C+R. The order is O(N^2), for example
// when C = R = N/2.
for (int i = mCFirst; i != -1; i = V(i).sNext)
{
if (IsEar(i))
{
InsertEndE(i);
}
}
V(mEFirst).ePrev = mELast;
V(mELast).eNext = mEFirst;
// Remove the ears, one at a time.
bool bRemoveAnEar = true;
while (bRemoveAnEar)
{
// Add the triangle with the ear to the output list of
// triangles.
int iVPrev = V(mEFirst).vPrev;
int iVNext = V(mEFirst).vNext;
mTriangles.push_back( { V(iVPrev).index, V(mEFirst).index, V(iVNext).index } );
// Remove the vertex corresponding to the ear.
RemoveV(mEFirst);
if (--numVertices == 3)
{
// Only one triangle remains, just remove the ear and
// copy it.
mEFirst = RemoveE(mEFirst);
iVPrev = V(mEFirst).vPrev;
iVNext = V(mEFirst).vNext;
mTriangles.push_back( { V(iVPrev).index, V(mEFirst).index, V(iVNext).index } );
bRemoveAnEar = false;
continue;
}
// Removal of the ear can cause an adjacent vertex to become
// an ear or to stop being an ear.
Vertex& vPrev = V(iVPrev);
if (vPrev.isEar)
{
if (!IsEar(iVPrev))
{
RemoveE(iVPrev);
}
}
else
{
bool wasReflex = !vPrev.isConvex;
if (IsConvex(iVPrev))
{
if (wasReflex)
{
RemoveR(iVPrev);
}
if (IsEar(iVPrev))
{
InsertBeforeE(iVPrev);
}
}
}
Vertex& vNext = V(iVNext);
if (vNext.isEar)
{
if (!IsEar(iVNext))
{
RemoveE(iVNext);
}
}
else
{
bool wasReflex = !vNext.isConvex;
if (IsConvex(iVNext))
{
if (wasReflex)
{
RemoveR(iVNext);
}
if (IsEar(iVNext))
{
InsertAfterE(iVNext);
}
}
}
// Remove the ear.
mEFirst = RemoveE(mEFirst);
}
}
// Given an outer polygon that contains an inner polygon, this
// function determines a pair of visible vertices and inserts two
// coincident edges to generate a nearly simple polygon.
bool CombinePolygons(int nextElement, Polygon const& outer,
Polygon const& inner, std::map<int, int>& indexMap,
std::vector<int>& combined)
{
int const numOuterIndices = static_cast<int>(outer.size());
int const* outerIndices = outer.data();
int const numInnerIndices = static_cast<int>(inner.size());
int const* innerIndices = inner.data();
// Locate the inner-polygon vertex of maximum x-value, call this
// vertex M.
ComputeType xmax = mComputePoints[innerIndices[0]][0];
int xmaxIndex = 0;
for (int i = 1; i < numInnerIndices; ++i)
{
ComputeType x = mComputePoints[innerIndices[i]][0];
if (x > xmax)
{
xmax = x;
xmaxIndex = i;
}
}
Vector2<ComputeType> M = mComputePoints[innerIndices[xmaxIndex]];
// Find the edge whose intersection Intr with the ray M+t*(1,0)
// minimizes
// the ray parameter t >= 0.
ComputeType const cmax = static_cast<ComputeType>(std::numeric_limits<InputType>::max());
ComputeType const zero = static_cast<ComputeType>(0);
Vector2<ComputeType> intr{ cmax, M[1] };
int v0min = -1, v1min = -1, endMin = -1;
int i0, i1;
ComputeType s = cmax;
ComputeType t = cmax;
for (i0 = numOuterIndices - 1, i1 = 0; i1 < numOuterIndices; i0 = i1++)
{
// Consider only edges for which the first vertex is below
// (or on) the ray and the second vertex is above (or on)
// the ray.
Vector2<ComputeType> diff0 = mComputePoints[outerIndices[i0]] - M;
if (diff0[1] > zero)
{
continue;
}
Vector2<ComputeType> diff1 = mComputePoints[outerIndices[i1]] - M;
if (diff1[1] < zero)
{
continue;
}
// At this time, diff0.y <= 0 and diff1.y >= 0.
int currentEndMin = -1;
if (diff0[1] < zero)
{
if (diff1[1] > zero)
{
// The intersection of the edge and ray occurs at an
// interior edge point.
s = diff0[1] / (diff0[1] - diff1[1]);
t = diff0[0] + s * (diff1[0] - diff0[0]);
}
else // diff1.y == 0
{
// The vertex Outer[i1] is the intersection of the
// edge and the ray.
t = diff1[0];
currentEndMin = i1;
}
}
else // diff0.y == 0
{
if (diff1[1] > zero)
{
// The vertex Outer[i0] is the intersection of the
// edge and the ray;
t = diff0[0];
currentEndMin = i0;
}
else // diff1.y == 0
{
if (diff0[0] < diff1[0])
{
t = diff0[0];
currentEndMin = i0;
}
else
{
t = diff1[0];
currentEndMin = i1;
}
}
}
if (zero <= t && t < intr[0])
{
intr[0] = t;
v0min = i0;
v1min = i1;
if (currentEndMin == -1)
{
// The current closest point is an edge-interior
// point.
endMin = -1;
}
else
{
// The current closest point is a vertex.
endMin = currentEndMin;
}
}
else if (t == intr[0])
{
// The current closest point is a vertex shared by
// multiple edges; thus, endMin and currentMin refer to
// the same point.
LogAssert(endMin != -1 && currentEndMin != -1, "Unexpected condition.");
// We need to select the edge closest to M. The previous
// closest edge is <outer[v0min],outer[v1min]>. The
// current candidate is <outer[i0],outer[i1]>.
Vector2<ComputeType> shared = mComputePoints[outerIndices[i1]];
// For the previous closest edge, endMin refers to a
// vertex of the edge. Get the index of the other vertex.
int other = (endMin == v0min ? v1min : v0min);
// The new edge is closer if the other vertex of the old
// edge is left-of the new edge.
diff0 = mComputePoints[outerIndices[i0]] - shared;
diff1 = mComputePoints[outerIndices[other]] - shared;
ComputeType dotperp = DotPerp(diff0, diff1);
if (dotperp > zero)
{
// The new edge is closer to M.
v0min = i0;
v1min = i1;
endMin = currentEndMin;
}
}
}
// The intersection intr[0] stored only the t-value of the ray.
// The actual point is (mx,my)+t*(1,0), so intr[0] must be
// adjusted.
intr[0] += M[0];
int maxCosIndex;
if (endMin == -1)
{
// If you reach this assert, there is a good chance that you
// have two inner polygons that share a vertex or an edge.
LogAssert(v0min >= 0 && v1min >= 0, "Is this an invalid nested polygon?");
// Select one of Outer[v0min] and Outer[v1min] that has an
// x-value larger than M.x, call this vertex P. The triangle
// <M,I,P> must contain an outer-polygon vertex that is
// visible to M, which is possibly P itself.
Vector2<ComputeType> sTriangle[3]; // <P,M,I> or <P,I,M>
int pIndex;
if (mComputePoints[outerIndices[v0min]][0] > mComputePoints[outerIndices[v1min]][0])
{
sTriangle[0] = mComputePoints[outerIndices[v0min]];
sTriangle[1] = intr;
sTriangle[2] = M;
pIndex = v0min;
}
else
{
sTriangle[0] = mComputePoints[outerIndices[v1min]];
sTriangle[1] = M;
sTriangle[2] = intr;
pIndex = v1min;
}
// If any outer-polygon vertices other than P are inside the
// triangle <M,I,P>, then at least one of these vertices must
// be a reflex vertex. It is sufficient to locate the reflex
// vertex R (if any) in <M,I,P> that minimizes the angle
// between R-M and (1,0). The data member mQuery is used for
// the reflex query.
Vector2<ComputeType> diff = sTriangle[0] - M;
ComputeType maxSqrLen = Dot(diff, diff);
ComputeType maxCos = diff[0] * diff[0] / maxSqrLen;
PrimalQuery2<ComputeType> localQuery(3, sTriangle);
maxCosIndex = pIndex;
for (int i = 0; i < numOuterIndices; ++i)
{
if (i == pIndex)
{
continue;
}
int curr = outerIndices[i];
int prev = outerIndices[(i + numOuterIndices - 1) % numOuterIndices];
int next = outerIndices[(i + 1) % numOuterIndices];
if (mQuery.ToLine(curr, prev, next) <= 0
&& localQuery.ToTriangle(mComputePoints[curr], 0, 1, 2) <= 0)
{
// The vertex is reflex and inside the <M,I,P>
// triangle.
diff = mComputePoints[curr] - M;
ComputeType sqrLen = Dot(diff, diff);
ComputeType cs = diff[0] * diff[0] / sqrLen;
if (cs > maxCos)
{
// The reflex vertex forms a smaller angle with
// the positive x-axis, so it becomes the new
// visible candidate.
maxSqrLen = sqrLen;
maxCos = cs;
maxCosIndex = i;
}
else if (cs == maxCos && sqrLen < maxSqrLen)
{
// The reflex vertex has angle equal to the
// current minimum but the length is smaller, so
// it becomes the new visible candidate.
maxSqrLen = sqrLen;
maxCosIndex = i;
}
}
}
}
else
{
maxCosIndex = endMin;
}
// The visible vertices are Position[Inner[xmaxIndex]] and
// Position[Outer[maxCosIndex]]. Two coincident edges with
// these endpoints are inserted to connect the outer and inner
// polygons into a simple polygon. Each of the two Position[]
// values must be duplicated, because the original might be
// convex (or reflex) and the duplicate is reflex (or convex).
// The ear-clipping algorithm needs to distinguish between them.
combined.resize(numOuterIndices + numInnerIndices + 2);
int cIndex = 0;
for (int i = 0; i <= maxCosIndex; ++i, ++cIndex)
{
combined[cIndex] = outerIndices[i];
}
for (int i = 0; i < numInnerIndices; ++i, ++cIndex)
{
int j = (xmaxIndex + i) % numInnerIndices;
combined[cIndex] = innerIndices[j];
}
int innerIndex = innerIndices[xmaxIndex];
mComputePoints[nextElement] = mComputePoints[innerIndex];
combined[cIndex] = nextElement;
auto iter = indexMap.find(innerIndex);
if (iter != indexMap.end())
{
innerIndex = iter->second;
}
indexMap[nextElement] = innerIndex;
++cIndex;
++nextElement;
int outerIndex = outerIndices[maxCosIndex];
mComputePoints[nextElement] = mComputePoints[outerIndex];
combined[cIndex] = nextElement;
iter = indexMap.find(outerIndex);
if (iter != indexMap.end())
{
outerIndex = iter->second;
}
indexMap[nextElement] = outerIndex;
++cIndex;
++nextElement;
for (int i = maxCosIndex + 1; i < numOuterIndices; ++i, ++cIndex)
{
combined[cIndex] = outerIndices[i];
}
return true;
}
// Given an outer polygon that contains a set of nonoverlapping inner
// polygons, this function determines pairs of visible vertices and
// inserts coincident edges to generate a nearly simple polygon. It
// repeatedly calls CombinePolygons for each inner polygon of the
// outer polygon.
bool ProcessOuterAndInners(int& nextElement, Polygon const& outer,
std::vector<Polygon> const& inners, std::map<int, int>& indexMap,
std::vector<int>& combined)
{
// Sort the inner polygons based on maximum x-values.
int numInners = static_cast<int>(inners.size());
std::vector<std::pair<ComputeType, int>> pairs(numInners);
for (int p = 0; p < numInners; ++p)
{
int numIndices = static_cast<int>(inners[p].size());
int const* indices = inners[p].data();
ComputeType xmax = mComputePoints[indices[0]][0];
for (int j = 1; j < numIndices; ++j)
{
ComputeType x = mComputePoints[indices[j]][0];
if (x > xmax)
{
xmax = x;
}
}
pairs[p].first = xmax;
pairs[p].second = p;
}
std::sort(pairs.begin(), pairs.end());
// Merge the inner polygons with the outer polygon.
Polygon currentPolygon = outer;
for (int p = numInners - 1; p >= 0; --p)
{
Polygon const& polygon = inners[pairs[p].second];
Polygon currentCombined;
if (!CombinePolygons(nextElement, currentPolygon, polygon, indexMap, currentCombined))
{
return false;
}
currentPolygon = std::move(currentCombined);
nextElement += 2;
}
for (auto index : currentPolygon)
{
combined.push_back(index);
}
return true;
}
// The insertion of coincident edges to obtain a nearly simple polygon
// requires duplication of vertices in order that the ear-clipping
// algorithm work correctly. After the triangulation, the indices of
// the duplicated vertices are converted to the original indices.
void RemapIndices(std::map<int, int> const& indexMap)
{
// The triangulation includes indices to the duplicated outer and
// inner vertices. These indices must be mapped back to the
// original ones.
for (auto& tri : mTriangles)
{
for (int i = 0; i < 3; ++i)
{
auto iter = indexMap.find(tri[i]);
if (iter != indexMap.end())
{
tri[i] = iter->second;
}
}
}
}
// Two extra elements are needed in the position array per
// outer-inners polygon. This function computes the total number of
// extra elements needed for the input tree and it converts InputType
// vertices to ComputeType values.
int InitializeFromTree(std::shared_ptr<PolygonTree> const& tree)
{
// Use a breadth-first search to process the outer-inners pairs
// of the tree of nested polygons.
int numExtraPoints = 0;
std::queue<std::shared_ptr<PolygonTree>> treeQueue;
treeQueue.push(tree);
while (treeQueue.size() > 0)
{
// The 'root' is an outer polygon.
std::shared_ptr<PolygonTree> outer = treeQueue.front();
treeQueue.pop();
// Count number of extra points for this outer-inners pair.
int numChildren = static_cast<int>(outer->child.size());
numExtraPoints += 2 * numChildren;
// Convert outer points from InputType to ComputeType.
int const numOuterIndices = static_cast<int>(outer->polygon.size());
int const* outerIndices = outer->polygon.data();
for (int i = 0; i < numOuterIndices; ++i)
{
int index = outerIndices[i];
if (!mIsConverted[index])
{
mIsConverted[index] = true;
for (int j = 0; j < 2; ++j)
{
mComputePoints[index][j] = mPoints[index][j];
}
}
}
// The grandchildren of the outer polygon are also outer
// polygons. Insert them into the queue for processing.
for (int c = 0; c < numChildren; ++c)
{
// The 'child' is an inner polygon.
std::shared_ptr<PolygonTree> inner = outer->child[c];
// Convert inner points from InputType to ComputeType.
int const numInnerIndices = static_cast<int>(inner->polygon.size());
int const* innerIndices = inner->polygon.data();
for (int i = 0; i < numInnerIndices; ++i)
{
int index = innerIndices[i];
if (!mIsConverted[index])
{
mIsConverted[index] = true;
for (int j = 0; j < 2; ++j)
{
mComputePoints[index][j] = mPoints[index][j];
}
}
}
int numGrandChildren = static_cast<int>(inner->child.size());
for (int g = 0; g < numGrandChildren; ++g)
{
treeQueue.push(inner->child[g]);
}
}
}
return numExtraPoints;
}
// The input polygon.
int mNumPoints;
Vector2<InputType> const* mPoints;
// The output triangulation.
std::vector<std::array<int, 3>> mTriangles;
// The array of points used for geometric queries. If you want to be
// certain of a correct result, choose ComputeType to be BSNumber.
// The InputType points are convertex to ComputeType points on demand;
// the mIsConverted array keeps track of which input points have been
// converted.
std::vector<Vector2<ComputeType>> mComputePoints;
std::vector<bool> mIsConverted;
PrimalQuery2<ComputeType> mQuery;
// Doubly linked lists for storing specially tagged vertices.
class Vertex
{
public:
Vertex()
:
index(-1),
vPrev(-1),
vNext(-1),
sPrev(-1),
sNext(-1),
ePrev(-1),
eNext(-1),
isConvex(false),
isEar(false)
{
}
int index; // index of vertex in position array
int vPrev, vNext; // vertex links for polygon
int sPrev, sNext; // convex/reflex vertex links (disjoint lists)
int ePrev, eNext; // ear links
bool isConvex, isEar;
};
inline Vertex& V(int i)
{
LogAssert(0 <= i && i < static_cast<int>(mVertices.size()),
"Index out of range. Do you have coincident vertex-edge or edge-edge? These violate the assumptions for the algorithm.");
return mVertices[i];
}
bool IsConvex(int i)
{
Vertex& vertex = V(i);
int curr = vertex.index;
int prev = V(vertex.vPrev).index;
int next = V(vertex.vNext).index;
vertex.isConvex = (mQuery.ToLine(curr, prev, next) > 0);
return vertex.isConvex;
}
bool IsEar(int i)
{
Vertex& vertex = V(i);
if (mRFirst == -1)
{
// The remaining polygon is convex.
vertex.isEar = true;
return true;
}
// Search the reflex vertices and test if any are in the triangle
// <V[prev],V[curr],V[next]>.
int prev = V(vertex.vPrev).index;
int curr = vertex.index;
int next = V(vertex.vNext).index;
vertex.isEar = true;
for (int j = mRFirst; j != -1; j = V(j).sNext)
{
// Check if the test vertex is already one of the triangle
// vertices.
if (j == vertex.vPrev || j == i || j == vertex.vNext)
{
continue;
}
// V[j] has been ruled out as one of the original vertices of
// the triangle <V[prev],V[curr],V[next]>. When triangulating
// polygons with holes, V[j] might be a duplicated vertex, in
// which case it does not affect the earness of V[curr].
int test = V(j).index;
if (mComputePoints[test] == mComputePoints[prev]
|| mComputePoints[test] == mComputePoints[curr]
|| mComputePoints[test] == mComputePoints[next])
{
continue;
}
// Test if the vertex is inside or on the triangle. When it
// is, it causes V[curr] not to be an ear.
if (mQuery.ToTriangle(test, prev, curr, next) <= 0)
{
vertex.isEar = false;
break;
}
}
return vertex.isEar;
}
// insert convex vertex
void InsertAfterC(int i)
{
if (mCFirst == -1)
{
// Add the first convex vertex.
mCFirst = i;
}
else
{
V(mCLast).sNext = i;
V(i).sPrev = mCLast;
}
mCLast = i;
}
// insert reflex vertesx
void InsertAfterR(int i)
{
if (mRFirst == -1)
{
// Add the first reflex vertex.
mRFirst = i;
}
else
{
V(mRLast).sNext = i;
V(i).sPrev = mRLast;
}
mRLast = i;
}
// insert ear at end of list
void InsertEndE(int i)
{
if (mEFirst == -1)
{
// Add the first ear.
mEFirst = i;
mELast = i;
}
V(mELast).eNext = i;
V(i).ePrev = mELast;
mELast = i;
}
// insert ear after efirst
void InsertAfterE(int i)
{
Vertex& first = V(mEFirst);
int currENext = first.eNext;
Vertex& vertex = V(i);
vertex.ePrev = mEFirst;
vertex.eNext = currENext;
first.eNext = i;
V(currENext).ePrev = i;
}
// insert ear before efirst
void InsertBeforeE(int i)
{
Vertex& first = V(mEFirst);
int currEPrev = first.ePrev;
Vertex& vertex = V(i);
vertex.ePrev = currEPrev;
vertex.eNext = mEFirst;
first.ePrev = i;
V(currEPrev).eNext = i;
}
// remove vertex
void RemoveV(int i)
{
int currVPrev = V(i).vPrev;
int currVNext = V(i).vNext;
V(currVPrev).vNext = currVNext;
V(currVNext).vPrev = currVPrev;
}
// remove ear at i
int RemoveE(int i)
{
int currEPrev = V(i).ePrev;
int currENext = V(i).eNext;
V(currEPrev).eNext = currENext;
V(currENext).ePrev = currEPrev;
return currENext;
}
// remove reflex vertex
void RemoveR(int i)
{
LogAssert(mRFirst != -1 && mRLast != -1, "Reflex vertices must exist.");
if (i == mRFirst)
{
mRFirst = V(i).sNext;
if (mRFirst != -1)
{
V(mRFirst).sPrev = -1;
}
V(i).sNext = -1;
}
else if (i == mRLast)
{
mRLast = V(i).sPrev;
if (mRLast != -1)
{
V(mRLast).sNext = -1;
}
V(i).sPrev = -1;
}
else
{
int currSPrev = V(i).sPrev;
int currSNext = V(i).sNext;
V(currSPrev).sNext = currSNext;
V(currSNext).sPrev = currSPrev;
V(i).sNext = -1;
V(i).sPrev = -1;
}
}
// The doubly linked list.
std::vector<Vertex> mVertices;
int mCFirst, mCLast; // linear list of convex vertices
int mRFirst, mRLast; // linear list of reflex vertices
int mEFirst, mELast; // cyclical list of ears
};
}