You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							180 lines
						
					
					
						
							6.2 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							180 lines
						
					
					
						
							6.2 KiB
						
					
					
				
								// David Eberly, Geometric Tools, Redmond WA 98052
							 | 
						|
								// Copyright (c) 1998-2021
							 | 
						|
								// Distributed under the Boost Software License, Version 1.0.
							 | 
						|
								// https://www.boost.org/LICENSE_1_0.txt
							 | 
						|
								// https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
							 | 
						|
								// Version: 4.0.2019.08.13
							 | 
						|
								
							 | 
						|
								#pragma once
							 | 
						|
								
							 | 
						|
								#include <Mathematics/FIQuery.h>
							 | 
						|
								#include <Mathematics/TIQuery.h>
							 | 
						|
								#include <Mathematics/Ray.h>
							 | 
						|
								#include <Mathematics/Triangle.h>
							 | 
						|
								#include <Mathematics/Vector3.h>
							 | 
						|
								
							 | 
						|
								namespace gte
							 | 
						|
								{
							 | 
						|
								    template <typename Real>
							 | 
						|
								    class TIQuery<Real, Ray3<Real>, Triangle3<Real>>
							 | 
						|
								    {
							 | 
						|
								    public:
							 | 
						|
								        struct Result
							 | 
						|
								        {
							 | 
						|
								            bool intersect;
							 | 
						|
								        };
							 | 
						|
								
							 | 
						|
								        Result operator()(Ray3<Real> const& ray, Triangle3<Real> const& triangle)
							 | 
						|
								        {
							 | 
						|
								            Result result;
							 | 
						|
								
							 | 
						|
								            // Compute the offset origin, edges, and normal.
							 | 
						|
								            Vector3<Real> diff = ray.origin - triangle.v[0];
							 | 
						|
								            Vector3<Real> edge1 = triangle.v[1] - triangle.v[0];
							 | 
						|
								            Vector3<Real> edge2 = triangle.v[2] - triangle.v[0];
							 | 
						|
								            Vector3<Real> normal = Cross(edge1, edge2);
							 | 
						|
								
							 | 
						|
								            // Solve Q + t*D = b1*E1 + b2*E2 (Q = kDiff, D = ray direction,
							 | 
						|
								            // E1 = edge1, E2 = edge2, N = Cross(E1,E2)) by
							 | 
						|
								            //   |Dot(D,N)|*b1 = sign(Dot(D,N))*Dot(D,Cross(Q,E2))
							 | 
						|
								            //   |Dot(D,N)|*b2 = sign(Dot(D,N))*Dot(D,Cross(E1,Q))
							 | 
						|
								            //   |Dot(D,N)|*t = -sign(Dot(D,N))*Dot(Q,N)
							 | 
						|
								            Real DdN = Dot(ray.direction, normal);
							 | 
						|
								            Real sign;
							 | 
						|
								            if (DdN > (Real)0)
							 | 
						|
								            {
							 | 
						|
								                sign = (Real)1;
							 | 
						|
								            }
							 | 
						|
								            else if (DdN < (Real)0)
							 | 
						|
								            {
							 | 
						|
								                sign = (Real)-1;
							 | 
						|
								                DdN = -DdN;
							 | 
						|
								            }
							 | 
						|
								            else
							 | 
						|
								            {
							 | 
						|
								                // Ray and triangle are parallel, call it a "no intersection"
							 | 
						|
								                // even if the ray does intersect.
							 | 
						|
								                result.intersect = false;
							 | 
						|
								                return result;
							 | 
						|
								            }
							 | 
						|
								
							 | 
						|
								            Real DdQxE2 = sign * DotCross(ray.direction, diff, edge2);
							 | 
						|
								            if (DdQxE2 >= (Real)0)
							 | 
						|
								            {
							 | 
						|
								                Real DdE1xQ = sign * DotCross(ray.direction, edge1, diff);
							 | 
						|
								                if (DdE1xQ >= (Real)0)
							 | 
						|
								                {
							 | 
						|
								                    if (DdQxE2 + DdE1xQ <= DdN)
							 | 
						|
								                    {
							 | 
						|
								                        // Line intersects triangle, check whether ray does.
							 | 
						|
								                        Real QdN = -sign * Dot(diff, normal);
							 | 
						|
								                        if (QdN >= (Real)0)
							 | 
						|
								                        {
							 | 
						|
								                            // Ray intersects triangle.
							 | 
						|
								                            result.intersect = true;
							 | 
						|
								                            return result;
							 | 
						|
								                        }
							 | 
						|
								                        // else: t < 0, no intersection
							 | 
						|
								                    }
							 | 
						|
								                    // else: b1+b2 > 1, no intersection
							 | 
						|
								                }
							 | 
						|
								                // else: b2 < 0, no intersection
							 | 
						|
								            }
							 | 
						|
								            // else: b1 < 0, no intersection
							 | 
						|
								
							 | 
						|
								            result.intersect = false;
							 | 
						|
								            return result;
							 | 
						|
								        }
							 | 
						|
								    };
							 | 
						|
								
							 | 
						|
								    template <typename Real>
							 | 
						|
								    class FIQuery<Real, Ray3<Real>, Triangle3<Real>>
							 | 
						|
								    {
							 | 
						|
								    public:
							 | 
						|
								        struct Result
							 | 
						|
								        {
							 | 
						|
								            Result()
							 | 
						|
								                :
							 | 
						|
								                intersect(false),
							 | 
						|
								                parameter((Real)0),
							 | 
						|
								                triangleBary{ (Real)0, (Real)0, (Real)0 },
							 | 
						|
								                point{ (Real)0, (Real)0, (Real)0 }
							 | 
						|
								            {
							 | 
						|
								            }
							 | 
						|
								
							 | 
						|
								            bool intersect;
							 | 
						|
								            Real parameter;
							 | 
						|
								            std::array<Real, 3> triangleBary;
							 | 
						|
								            Vector3<Real> point;
							 | 
						|
								        };
							 | 
						|
								
							 | 
						|
								        Result operator()(Ray3<Real> const& ray, Triangle3<Real> const& triangle)
							 | 
						|
								        {
							 | 
						|
								            Result result;
							 | 
						|
								
							 | 
						|
								            // Compute the offset origin, edges, and normal.
							 | 
						|
								            Vector3<Real> diff = ray.origin - triangle.v[0];
							 | 
						|
								            Vector3<Real> edge1 = triangle.v[1] - triangle.v[0];
							 | 
						|
								            Vector3<Real> edge2 = triangle.v[2] - triangle.v[0];
							 | 
						|
								            Vector3<Real> normal = Cross(edge1, edge2);
							 | 
						|
								
							 | 
						|
								            // Solve Q + t*D = b1*E1 + b2*E2 (Q = kDiff, D = ray direction,
							 | 
						|
								            // E1 = edge1, E2 = edge2, N = Cross(E1,E2)) by
							 | 
						|
								            //   |Dot(D,N)|*b1 = sign(Dot(D,N))*Dot(D,Cross(Q,E2))
							 | 
						|
								            //   |Dot(D,N)|*b2 = sign(Dot(D,N))*Dot(D,Cross(E1,Q))
							 | 
						|
								            //   |Dot(D,N)|*t = -sign(Dot(D,N))*Dot(Q,N)
							 | 
						|
								            Real DdN = Dot(ray.direction, normal);
							 | 
						|
								            Real sign;
							 | 
						|
								            if (DdN > (Real)0)
							 | 
						|
								            {
							 | 
						|
								                sign = (Real)1;
							 | 
						|
								            }
							 | 
						|
								            else if (DdN < (Real)0)
							 | 
						|
								            {
							 | 
						|
								                sign = (Real)-1;
							 | 
						|
								                DdN = -DdN;
							 | 
						|
								            }
							 | 
						|
								            else
							 | 
						|
								            {
							 | 
						|
								                // Ray and triangle are parallel, call it a "no intersection"
							 | 
						|
								                // even if the ray does intersect.
							 | 
						|
								                result.intersect = false;
							 | 
						|
								                return result;
							 | 
						|
								            }
							 | 
						|
								
							 | 
						|
								            Real DdQxE2 = sign * DotCross(ray.direction, diff, edge2);
							 | 
						|
								            if (DdQxE2 >= (Real)0)
							 | 
						|
								            {
							 | 
						|
								                Real DdE1xQ = sign * DotCross(ray.direction, edge1, diff);
							 | 
						|
								                if (DdE1xQ >= (Real)0)
							 | 
						|
								                {
							 | 
						|
								                    if (DdQxE2 + DdE1xQ <= DdN)
							 | 
						|
								                    {
							 | 
						|
								                        // Line intersects triangle, check whether ray does.
							 | 
						|
								                        Real QdN = -sign * Dot(diff, normal);
							 | 
						|
								                        if (QdN >= (Real)0)
							 | 
						|
								                        {
							 | 
						|
								                            // Ray intersects triangle.
							 | 
						|
								                            result.intersect = true;
							 | 
						|
								                            Real inv = (Real)1 / DdN;
							 | 
						|
								                            result.parameter = QdN * inv;
							 | 
						|
								                            result.triangleBary[1] = DdQxE2 * inv;
							 | 
						|
								                            result.triangleBary[2] = DdE1xQ * inv;
							 | 
						|
								                            result.triangleBary[0] =
							 | 
						|
								                                (Real)1 - result.triangleBary[1] - result.triangleBary[2];
							 | 
						|
								                            result.point = ray.origin + result.parameter * ray.direction;
							 | 
						|
								                            return result;
							 | 
						|
								                        }
							 | 
						|
								                        // else: t < 0, no intersection
							 | 
						|
								                    }
							 | 
						|
								                    // else: b1+b2 > 1, no intersection
							 | 
						|
								                }
							 | 
						|
								                // else: b2 < 0, no intersection
							 | 
						|
								            }
							 | 
						|
								            // else: b1 < 0, no intersection
							 | 
						|
								
							 | 
						|
								            result.intersect = false;
							 | 
						|
								            return result;
							 | 
						|
								        }
							 | 
						|
								    };
							 | 
						|
								}
							 | 
						|
								
							 |