You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

278 lines
9.9 KiB

// David Eberly, Geometric Tools, Redmond WA 98052
// Copyright (c) 1998-2021
// Distributed under the Boost Software License, Version 1.0.
// https://www.boost.org/LICENSE_1_0.txt
// https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
// Version: 4.0.2019.08.13
#pragma once
#include <Mathematics/FIQuery.h>
#include <Mathematics/TIQuery.h>
#include <Mathematics/OrientedBox.h>
#include <Mathematics/Vector2.h>
#include <vector>
// The queries consider the box to be a solid.
//
// The test-intersection query uses the method of separating axes.
// https://www.geometrictools.com/Documentation/MethodOfSeparatingAxes.pdf
// The set of potential separating directions includes the 2 edge normals of
// box0 and the 2 edge normals of box1. The integer 'separating' identifies
// the axis that reported separation; there may be more than one but only one
// is reported. The value is 0 when box0.axis[0] separates, 1 when
// box0.axis[1] separates, 2 when box1.axis[0] separates or 3 when
// box1.axis[1] separates.
namespace gte
{
template <typename Real>
class TIQuery<Real, OrientedBox2<Real>, OrientedBox2<Real>>
{
public:
struct Result
{
bool intersect;
int separating;
};
Result operator()(OrientedBox2<Real> const& box0, OrientedBox2<Real> const& box1)
{
Result result;
// Convenience variables.
Vector2<Real> const* A0 = &box0.axis[0];
Vector2<Real> const* A1 = &box1.axis[0];
Vector2<Real> const& E0 = box0.extent;
Vector2<Real> const& E1 = box1.extent;
// Compute difference of box centers, D = C1-C0.
Vector2<Real> D = box1.center - box0.center;
Real absA0dA1[2][2], rSum;
// Test box0.axis[0].
absA0dA1[0][0] = std::fabs(Dot(A0[0], A1[0]));
absA0dA1[0][1] = std::fabs(Dot(A0[0], A1[1]));
rSum = E0[0] + E1[0] * absA0dA1[0][0] + E1[1] * absA0dA1[0][1];
if (std::fabs(Dot(A0[0], D)) > rSum)
{
result.intersect = false;
result.separating = 0;
return result;
}
// Test axis box0.axis[1].
absA0dA1[1][0] = std::fabs(Dot(A0[1], A1[0]));
absA0dA1[1][1] = std::fabs(Dot(A0[1], A1[1]));
rSum = E0[1] + E1[0] * absA0dA1[1][0] + E1[1] * absA0dA1[1][1];
if (std::fabs(Dot(A0[1], D)) > rSum)
{
result.intersect = false;
result.separating = 1;
return result;
}
// Test axis box1.axis[0].
rSum = E1[0] + E0[0] * absA0dA1[0][0] + E0[1] * absA0dA1[1][0];
if (std::fabs(Dot(A1[0], D)) > rSum)
{
result.intersect = false;
result.separating = 2;
return result;
}
// Test axis box1.axis[1].
rSum = E1[1] + E0[0] * absA0dA1[0][1] + E0[1] * absA0dA1[1][1];
if (std::fabs(Dot(A1[1], D)) > rSum)
{
result.intersect = false;
result.separating = 3;
return result;
}
result.intersect = true;
return result;
}
};
template <typename Real>
class FIQuery<Real, OrientedBox2<Real>, OrientedBox2<Real>>
{
public:
struct Result
{
bool intersect;
// If 'intersect' is true, the boxes intersect in a convex
// 'polygon'.
std::vector<Vector2<Real>> polygon;
};
Result operator()(OrientedBox2<Real> const& box0, OrientedBox2<Real> const& box1)
{
Result result;
result.intersect = true;
// Initialize the intersection polygon to box0, listing the
// vertices in counterclockwise order.
std::array<Vector2<Real>, 4> vertex;
box0.GetVertices(vertex);
result.polygon.push_back(vertex[0]); // C - e0 * U0 - e1 * U1
result.polygon.push_back(vertex[1]); // C + e0 * U0 - e1 * U1
result.polygon.push_back(vertex[3]); // C + e0 * U0 + e1 * U1
result.polygon.push_back(vertex[2]); // C - e0 * U0 + e1 * U1
// Clip the polygon using the lines defining edges of box1. The
// line normal points inside box1. The line origin is the first
// vertex of the edge when traversing box1 counterclockwise.
box1.GetVertices(vertex);
std::array<Vector2<Real>, 4> normal =
{
box1.axis[1], -box1.axis[0], box1.axis[0], -box1.axis[1]
};
for (int i = 0; i < 4; ++i)
{
if (Outside(vertex[i], normal[i], result.polygon))
{
// The boxes are separated.
result.intersect = false;
result.polygon.clear();
break;
}
}
return result;
}
private:
// The line normals are inner pointing. The function returns true
// when the incoming polygon is outside the line, in which case the
// boxes do not intersect. If the function returns false, the
// outgoing polygon is the incoming polygon intersected with the
// closed halfspacedefined by the line.
bool Outside(Vector2<Real> const& origin, Vector2<Real> const& normal,
std::vector<Vector2<Real>>& polygon)
{
// Determine whether the polygon vertices are outside the polygon,
// inside the polygon, or on the polygon boundary.
int const numVertices = static_cast<int>(polygon.size());
std::vector<Real> distance(numVertices);
int positive = 0, negative = 0, positiveIndex = -1;
for (int i = 0; i < numVertices; ++i)
{
distance[i] = Dot(normal, polygon[i] - origin);
if (distance[i] > (Real)0)
{
++positive;
if (positiveIndex == -1)
{
positiveIndex = i;
}
}
else if (distance[i] < (Real)0)
{
++negative;
}
}
if (positive == 0)
{
// The polygon is strictly outside the line.
return true;
}
if (negative == 0)
{
// The polygon is contained in the closed halfspace whose
// boundary is the line. It is fully visible and no clipping
// is necessary.
return false;
}
// The line transversely intersects the polygon. Clip the polygon.
std::vector<Vector2<Real>> clipPolygon;
Vector2<Real> vertex;
int curr, prev;
Real t;
if (positiveIndex > 0)
{
// Compute the first clip vertex on the line.
curr = positiveIndex;
prev = curr - 1;
t = distance[curr] / (distance[curr] - distance[prev]);
vertex = polygon[curr] + t * (polygon[prev] - polygon[curr]);
clipPolygon.push_back(vertex);
// Include the vertices on the positive side of line.
while (curr < numVertices && distance[curr] >(Real)0)
{
clipPolygon.push_back(polygon[curr++]);
}
// Compute the kast clip vertex on the line.
if (curr < numVertices)
{
prev = curr - 1;
}
else
{
curr = 0;
prev = numVertices - 1;
}
t = distance[curr] / (distance[curr] - distance[prev]);
vertex = polygon[curr] + t * (polygon[prev] - polygon[curr]);
clipPolygon.push_back(vertex);
}
else // positiveIndex is 0
{
// Include the vertices on the positive side of line.
curr = 0;
while (curr < numVertices && distance[curr] >(Real)0)
{
clipPolygon.push_back(polygon[curr++]);
}
// Compute the last clip vertex on the line.
prev = curr - 1;
t = distance[curr] / (distance[curr] - distance[prev]);
vertex = polygon[curr] + t * (polygon[prev] - polygon[curr]);
clipPolygon.push_back(vertex);
// Skip the vertices on the negative side of the line.
while (curr < numVertices && distance[curr] <= (Real)0)
{
curr++;
}
// Compute the first clip vertex on the line.
if (curr < numVertices)
{
prev = curr - 1;
t = distance[curr] / (distance[curr] - distance[prev]);
vertex = polygon[curr] + t * (polygon[prev] - polygon[curr]);
clipPolygon.push_back(vertex);
// Keep the vertices on the positive side of the line.
while (curr < numVertices && distance[curr] >(Real)0)
{
clipPolygon.push_back(polygon[curr++]);
}
}
else
{
curr = 0;
prev = numVertices - 1;
t = distance[curr] / (distance[curr] - distance[prev]);
vertex = polygon[curr] + t * (polygon[prev] - polygon[curr]);
clipPolygon.push_back(vertex);
}
}
polygon = clipPolygon;
return false;
}
};
}