You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

220 lines
9.0 KiB

// David Eberly, Geometric Tools, Redmond WA 98052
// Copyright (c) 1998-2021
// Distributed under the Boost Software License, Version 1.0.
// https://www.boost.org/LICENSE_1_0.txt
// https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
// Version: 4.0.2020.01.13
#pragma once
#include <Mathematics/CholeskyDecomposition.h>
#include <functional>
// Let F(p) = (F_{0}(p), F_{1}(p), ..., F_{n-1}(p)) be a vector-valued
// function of the parameters p = (p_{0}, p_{1}, ..., p_{m-1}). The
// nonlinear least-squares problem is to minimize the real-valued error
// function E(p) = |F(p)|^2, which is the squared length of F(p).
//
// Let J = dF/dp = [dF_{r}/dp_{c}] denote the Jacobian matrix, which is the
// matrix of first-order partial derivatives of F. The matrix has n rows and
// m columns, and the indexing (r,c) refers to row r and column c. A
// first-order approximation is F(p + d) = F(p) + J(p)d, where d is an m-by-1
// vector with small length. Consequently, an approximation to E is E(p + d)
// = |F(p + d)|^2 = |F(p) + J(p)d|^2. The goal is to choose d to minimize
// |F(p) + J(p)d|^2 and, hopefully, with E(p + d) < E(p). Choosing an initial
// p_{0}, the hope is that the algorithm generates a sequence p_{i} for which
// E(p_{i+1}) < E(p_{i}) and, in the limit, E(p_{j}) approaches the global
// minimum of E. The algorithm is referred to as Gauss-Newton iteration. If
// E does not decrease for a step of the algorithm, one can modify the
// algorithm to the Levenberg-Marquardt iteration. See
// LevenbergMarquardtMinimizer.h for a description and an implementation.
//
// For a single Gauss-Newton iteration, we need to choose d to minimize
// |F(p) + J(p)d|^2 where p is fixed. This is a linear least squares problem
// which can be formulated using the normal equations
// (J^T(p)*J(p))*d = -J^T(p)*F(p). The matrix J^T*J is positive semidefinite.
// If it is invertible, then d = -(J^T(p)*J(p))^{-1}*F(p). If it is not
// invertible, some other algorithm must be used to choose d; one option is
// to use gradient descent for the step. A Cholesky decomposition can be
// used to solve the linear system.
//
// Although an implementation can allow the caller to pass an array of
// functions F_{i}(p) and an array of derivatives dF_{r}/dp_{c}, some
// applications might involve a very large n that precludes storing all
// the computed Jacobian matrix entries because of excessive memory
// requirements. In such an application, it is better to compute instead
// the entries of the m-by-m matrix J^T*J and the m-by-1 vector J^T*F.
// Typically, m is small, so the memory requirements are not excessive. Also,
// there might be additional structure to F for which the caller can take
// advantage; for example, 3-tuples of components of F(p) might correspond to
// vectors that can be manipulated using an already existing mathematics
// library. The implementation here supports both approaches.
namespace gte
{
template <typename Real>
class GaussNewtonMinimizer
{
public:
// Convenient types for the domain vectors, the range vectors, the
// function F and the Jacobian J.
typedef GVector<Real> DVector; // numPDimensions
typedef GVector<Real> RVector; // numFDimensions
typedef GMatrix<Real> JMatrix; // numFDimensions-by-numPDimensions
typedef GMatrix<Real> JTJMatrix; // numPDimensions-by-numPDimensions
typedef GVector<Real> JTFVector; // numPDimensions
typedef std::function<void(DVector const&, RVector&)> FFunction;
typedef std::function<void(DVector const&, JMatrix&)> JFunction;
typedef std::function<void(DVector const&, JTJMatrix&, JTFVector&)> JPlusFunction;
// Create the minimizer that computes F(p) and J(p) directly.
GaussNewtonMinimizer(int numPDimensions, int numFDimensions,
FFunction const& inFFunction, JFunction const& inJFunction)
:
mNumPDimensions(numPDimensions),
mNumFDimensions(numFDimensions),
mFFunction(inFFunction),
mJFunction(inJFunction),
mF(mNumFDimensions),
mJ(mNumFDimensions, mNumPDimensions),
mJTJ(mNumPDimensions, mNumPDimensions),
mNegJTF(mNumPDimensions),
mDecomposer(mNumPDimensions),
mUseJFunction(true)
{
LogAssert(mNumPDimensions > 0 && mNumFDimensions > 0, "Invalid dimensions.");
}
// Create the minimizer that computes J^T(p)*J(p) and -J(p)*F(p).
GaussNewtonMinimizer(int numPDimensions, int numFDimensions,
FFunction const& inFFunction, JPlusFunction const& inJPlusFunction)
:
mNumPDimensions(numPDimensions),
mNumFDimensions(numFDimensions),
mFFunction(inFFunction),
mJPlusFunction(inJPlusFunction),
mF(mNumFDimensions),
mJ(mNumFDimensions, mNumPDimensions),
mJTJ(mNumPDimensions, mNumPDimensions),
mNegJTF(mNumPDimensions),
mDecomposer(mNumPDimensions),
mUseJFunction(false)
{
LogAssert(mNumPDimensions > 0 && mNumFDimensions > 0, "Invalid dimensions.");
}
// Disallow copy, assignment and move semantics.
GaussNewtonMinimizer(GaussNewtonMinimizer const&) = delete;
GaussNewtonMinimizer& operator=(GaussNewtonMinimizer const&) = delete;
GaussNewtonMinimizer(GaussNewtonMinimizer&&) = delete;
GaussNewtonMinimizer& operator=(GaussNewtonMinimizer&&) = delete;
inline int GetNumPDimensions() const
{
return mNumPDimensions;
}
inline int GetNumFDimensions() const
{
return mNumFDimensions;
}
struct Result
{
DVector minLocation;
Real minError;
Real minErrorDifference;
Real minUpdateLength;
size_t numIterations;
bool converged;
};
Result operator()(DVector const& p0, size_t maxIterations,
Real updateLengthTolerance, Real errorDifferenceTolerance)
{
Result result;
result.minLocation = p0;
result.minError = std::numeric_limits<Real>::max();
result.minErrorDifference = std::numeric_limits<Real>::max();
result.minUpdateLength = (Real)0;
result.numIterations = 0;
result.converged = false;
// As a simple precaution, ensure the tolerances are nonnegative.
updateLengthTolerance = std::max(updateLengthTolerance, (Real)0);
errorDifferenceTolerance = std::max(errorDifferenceTolerance, (Real)0);
// Compute the initial error.
mFFunction(p0, mF);
result.minError = Dot(mF, mF);
// Do the Gauss-Newton iterations.
auto pCurrent = p0;
for (result.numIterations = 1; result.numIterations <= maxIterations; ++result.numIterations)
{
ComputeLinearSystemInputs(pCurrent);
if (!mDecomposer.Factor(mJTJ))
{
// TODO: The matrix mJTJ is positive semi-definite, so the
// failure can occur when mJTJ has a zero eigenvalue in
// which case mJTJ is not invertible. Generate an iterate
// anyway, perhaps using gradient descent?
return result;
}
mDecomposer.SolveLower(mJTJ, mNegJTF);
mDecomposer.SolveUpper(mJTJ, mNegJTF);
auto pNext = pCurrent + mNegJTF;
mFFunction(pNext, mF);
Real error = Dot(mF, mF);
if (error < result.minError)
{
result.minErrorDifference = result.minError - error;
result.minUpdateLength = Length(mNegJTF);
result.minLocation = pNext;
result.minError = error;
if (result.minErrorDifference <= errorDifferenceTolerance
|| result.minUpdateLength <= updateLengthTolerance)
{
result.converged = true;
return result;
}
}
pCurrent = pNext;
}
return result;
}
private:
void ComputeLinearSystemInputs(DVector const& pCurrent)
{
if (mUseJFunction)
{
mJFunction(pCurrent, mJ);
mJTJ = MultiplyATB(mJ, mJ);
mNegJTF = -(mF * mJ);
}
else
{
mJPlusFunction(pCurrent, mJTJ, mNegJTF);
}
}
int mNumPDimensions, mNumFDimensions;
FFunction mFFunction;
JFunction mJFunction;
JPlusFunction mJPlusFunction;
// Storage for J^T(p)*J(p) and -J^T(p)*F(p) during the iterations.
RVector mF;
JMatrix mJ;
JTJMatrix mJTJ;
JTFVector mNegJTF;
CholeskyDecomposition<Real> mDecomposer;
bool mUseJFunction;
};
}