You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

633 lines
19 KiB

// David Eberly, Geometric Tools, Redmond WA 98052
// Copyright (c) 1998-2021
// Distributed under the Boost Software License, Version 1.0.
// https://www.boost.org/LICENSE_1_0.txt
// https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
// Version: 4.1.2020.11.16
#pragma once
#include <Mathematics/Logger.h>
#include <Mathematics/Math.h>
#include <array>
// The FPInterval [e0,e1] must satisfy e0 <= e1. Expose this define to trap
// invalid construction where e0 > e1.
#define GTE_THROW_ON_INVALID_INTERVAL
namespace gte
{
// The FPType must be 'float' or 'double'.
template <typename FPType>
class FPInterval
{
public:
// Construction. This is the only way to create an interval. All such
// intervals are immutable once created. The constructor
// FPInterval(FPType) is used to create the degenerate interval [e,e].
FPInterval()
:
mEndpoints{ static_cast<FPType>(0), static_cast<FPType>(0) }
{
static_assert(std::is_floating_point<FPType>::value, "Invalid type.");
}
FPInterval(FPInterval const& other)
:
mEndpoints(other.mEndpoints)
{
static_assert(std::is_floating_point<FPType>::value, "Invalid type.");
}
explicit FPInterval(FPType e)
:
mEndpoints{ e, e }
{
static_assert(std::is_floating_point<FPType>::value, "Invalid type.");
}
FPInterval(FPType e0, FPType e1)
:
mEndpoints{ e0, e1 }
{
static_assert(std::is_floating_point<FPType>::value, "Invalid type.");
#if defined(GTE_THROW_ON_INVALID_INTERVAL)
LogAssert(mEndpoints[0] <= mEndpoints[1], "Invalid FPInterval.");
#endif
}
FPInterval(std::array<FPType, 2> const& endpoint)
:
mEndpoints(endpoint)
{
static_assert(std::is_floating_point<FPType>::value, "Invalid type.");
#if defined(GTE_THROW_ON_INVALID_INTERVAL)
LogAssert(mEndpoints[0] <= mEndpoints[1], "Invalid FPInterval.");
#endif
}
FPInterval& operator=(FPInterval const& other)
{
static_assert(std::is_floating_point<FPType>::value, "Invalid type.");
mEndpoints = other.mEndpoints;
return *this;
}
// Member access. It is only possible to read the endpoints. You
// cannot modify the endpoints outside the arithmetic operations.
inline FPType operator[](size_t i) const
{
return mEndpoints[i];
}
inline std::array<FPType, 2> GetEndpoints() const
{
return mEndpoints;
}
// Arithmetic operations to compute intervals at the leaf nodes of
// an expression tree. Such nodes correspond to the raw floating-point
// variables of the expression. The non-class operators defined after
// the class definition are used to compute intervals at the interior
// nodes of the expression tree.
inline static FPInterval Add(FPType u, FPType v)
{
FPInterval w;
auto saveMode = std::fegetround();
std::fesetround(FE_DOWNWARD);
w.mEndpoints[0] = u + v;
std::fesetround(FE_UPWARD);
w.mEndpoints[1] = u + v;
std::fesetround(saveMode);
return w;
}
inline static FPInterval Sub(FPType u, FPType v)
{
FPInterval w;
auto saveMode = std::fegetround();
std::fesetround(FE_DOWNWARD);
w.mEndpoints[0] = u - v;
std::fesetround(FE_UPWARD);
w.mEndpoints[1] = u - v;
std::fesetround(saveMode);
return w;
}
inline static FPInterval Mul(FPType u, FPType v)
{
FPInterval w;
auto saveMode = std::fegetround();
std::fesetround(FE_DOWNWARD);
w.mEndpoints[0] = u * v;
std::fesetround(FE_UPWARD);
w.mEndpoints[1] = u * v;
std::fesetround(saveMode);
return w;
}
inline static FPInterval Div(FPType u, FPType v)
{
FPType const zero = static_cast<FPType>(0);
if (v != zero)
{
FPInterval w;
auto saveMode = std::fegetround();
std::fesetround(FE_DOWNWARD);
w.mEndpoints[0] = u / v;
std::fesetround(FE_UPWARD);
w.mEndpoints[1] = u / v;
std::fesetround(saveMode);
return w;
}
else
{
// Division by zero does not lead to a determinate FPInterval.
// Just return the entire set of real numbers.
return Reals();
}
}
// This function is called to compute the lower bound on the product
// of two intervals. Before calling the function, you need to call
// std::fesetround(FE_DOWNWARD). The idea is to compute lower bounds
// in batch mode (multiple calls of ProductLowerBound) in order to
// minimize FPU control word state changes.
static FPType ProductLowerBound(std::array<FPType, 2> const& u,
std::array<FPType, 2> const& v)
{
FPType const zero = static_cast<FPType>(0);
FPType w0;
if (u[0] >= zero)
{
if (v[0] >= zero)
{
w0 = u[0] * v[0];
}
else if (v[1] <= zero)
{
w0 = u[1] * v[0];
}
else
{
w0 = u[1] * v[0];
}
}
else if (u[1] <= zero)
{
if (v[0] >= zero)
{
w0 = u[0] * v[1];
}
else if (v[1] <= zero)
{
w0 = u[1] * v[1];
}
else
{
w0 = u[0] * v[1];
}
}
else
{
if (v[0] >= zero)
{
w0 = u[0] * v[1];
}
else if (v[1] <= zero)
{
w0 = u[1] * v[0];
}
else
{
w0 = u[0] * v[0];
}
}
return w0;
}
// This function is called to compute the upper bound on the product
// of two intervals. Before calling the function, you need to call
// std::fesetround(FE_UPWARD). The idea is to compute lower bounds
// inbatch mode (multiple calls of ProductUpperBound) in order to
// minimize FPU control word state changes.
static FPType ProductUpperBound(std::array<FPType, 2> const& u,
std::array<FPType, 2> const& v)
{
FPType const zero = static_cast<FPType>(0);
FPType w1;
if (u[0] >= zero)
{
if (v[0] >= zero)
{
w1 = u[1] * v[1];
}
else if (v[1] <= zero)
{
w1 = u[0] * v[1];
}
else
{
w1 = u[1] * v[1];
}
}
else if (u[1] <= zero)
{
if (v[0] >= zero)
{
w1 = u[1] * v[0];
}
else if (v[1] <= zero)
{
w1 = u[0] * v[0];
}
else
{
w1 = u[0] * v[0];
}
}
else
{
if (v[0] >= zero)
{
w1 = u[1] * v[1];
}
else if (v[1] <= zero)
{
w1 = u[0] * v[0];
}
else
{
w1 = u[1] * v[1];
}
}
return w1;
}
private:
std::array<FPType, 2> mEndpoints;
public:
// FOR INTERNAL USE ONLY. These are used by the non-class operators
// defined after the class definition.
inline static FPInterval Add(FPType u0, FPType u1, FPType v0, FPType v1)
{
FPInterval w;
auto saveMode = std::fegetround();
std::fesetround(FE_DOWNWARD);
w.mEndpoints[0] = u0 + v0;
std::fesetround(FE_UPWARD);
w.mEndpoints[1] = u1 + v1;
std::fesetround(saveMode);
return w;
}
inline static FPInterval Sub(FPType u0, FPType u1, FPType v0, FPType v1)
{
FPInterval w;
auto saveMode = std::fegetround();
std::fesetround(FE_DOWNWARD);
w.mEndpoints[0] = u0 - v1;
std::fesetround(FE_UPWARD);
w.mEndpoints[1] = u1 - v0;
std::fesetround(saveMode);
return w;
}
inline static FPInterval Mul(FPType u0, FPType u1, FPType v0, FPType v1)
{
FPInterval w;
auto saveMode = std::fegetround();
std::fesetround(FE_DOWNWARD);
w.mEndpoints[0] = u0 * v0;
std::fesetround(FE_UPWARD);
w.mEndpoints[1] = u1 * v1;
std::fesetround(saveMode);
return w;
}
inline static FPInterval Mul2(FPType u0, FPType u1, FPType v0, FPType v1)
{
auto saveMode = std::fegetround();
std::fesetround(FE_DOWNWARD);
FPType u0mv1 = u0 * v1;
FPType u1mv0 = u1 * v0;
std::fesetround(FE_UPWARD);
FPType u0mv0 = u0 * v0;
FPType u1mv1 = u1 * v1;
std::fesetround(saveMode);
return FPInterval<FPType>(std::min(u0mv1, u1mv0), std::max(u0mv0, u1mv1));
}
inline static FPInterval Div(FPType u0, FPType u1, FPType v0, FPType v1)
{
FPInterval w;
auto saveMode = std::fegetround();
std::fesetround(FE_DOWNWARD);
w.mEndpoints[0] = u0 / v1;
std::fesetround(FE_UPWARD);
w.mEndpoints[1] = u1 / v0;
std::fesetround(saveMode);
return w;
}
inline static FPInterval Reciprocal(FPType v0, FPType v1)
{
FPType const one = static_cast<FPType>(1);
FPInterval w;
auto saveMode = std::fegetround();
std::fesetround(FE_DOWNWARD);
w.mEndpoints[0] = one / v1;
std::fesetround(FE_UPWARD);
w.mEndpoints[1] = one / v0;
std::fesetround(saveMode);
return w;
}
inline static FPInterval ReciprocalDown(FPType v)
{
auto saveMode = std::fegetround();
std::fesetround(FE_DOWNWARD);
FPType recpv = static_cast<FPType>(1) / v;
std::fesetround(saveMode);
FPType const inf = std::numeric_limits<FPType>::infinity();
return FPInterval<FPType>(recpv, +inf);
}
inline static FPInterval ReciprocalUp(FPType v)
{
auto saveMode = std::fegetround();
std::fesetround(FE_UPWARD);
FPType recpv = static_cast<FPType>(1) / v;
std::fesetround(saveMode);
FPType const inf = std::numeric_limits<FPType>::infinity();
return FPInterval<FPType>(-inf, recpv);
}
inline static FPInterval Reals()
{
FPType const inf = std::numeric_limits<FPType>::infinity();
return FPInterval(-inf, +inf);
}
};
// Unary operations. Negation of [e0,e1] produces [-e1,-e0]. This
// operation needs to be supported in the sense of negating a
// "number" in an arithmetic expression.
template <typename FPType>
FPInterval<FPType> operator+(FPInterval<FPType> const& u)
{
return u;
}
template <typename FPType>
FPInterval<FPType> operator-(FPInterval<FPType> const& u)
{
return FPInterval<FPType>(-u[1], -u[0]);
}
// Addition operations.
template <typename FPType>
FPInterval<FPType> operator+(FPType u, FPInterval<FPType> const& v)
{
return FPInterval<FPType>::Add(u, u, v[0], v[1]);
}
template <typename FPType>
FPInterval<FPType> operator+(FPInterval<FPType> const& u, FPType v)
{
return FPInterval<FPType>::Add(u[0], u[1], v, v);
}
template <typename FPType>
FPInterval<FPType> operator+(FPInterval<FPType> const& u, FPInterval<FPType> const& v)
{
return FPInterval<FPType>::Add(u[0], u[1], v[0], v[1]);
}
template <typename FPType>
FPInterval<FPType>& operator+=(FPInterval<FPType>& u, FPType v)
{
u = u + v;
return u;
}
template <typename FPType>
FPInterval<FPType>& operator+=(FPInterval<FPType>& u, FPInterval<FPType> const& v)
{
u = u + v;
return u;
}
// Subtraction operations.
template <typename FPType>
FPInterval<FPType> operator-(FPType u, FPInterval<FPType> const& v)
{
return FPInterval<FPType>::Sub(u, u, v[0], v[1]);
}
template <typename FPType>
FPInterval<FPType> operator-(FPInterval<FPType> const& u, FPType v)
{
return FPInterval<FPType>::Sub(u[0], u[1], v, v);
}
template <typename FPType>
FPInterval<FPType> operator-(FPInterval<FPType> const& u, FPInterval<FPType> const& v)
{
return FPInterval<FPType>::Sub(u[0], u[1], v[0], v[1]);
}
template <typename FPType>
FPInterval<FPType>& operator-=(FPInterval<FPType>& u, FPType v)
{
u = u - v;
return u;
}
template <typename FPType>
FPInterval<FPType>& operator-=(FPInterval<FPType>& u, FPInterval<FPType> const& v)
{
u = u - v;
return u;
}
// Multiplication operations.
template <typename FPType>
FPInterval<FPType> operator*(FPType u, FPInterval<FPType> const& v)
{
FPType const zero = static_cast<FPType>(0);
if (u >= zero)
{
return FPInterval<FPType>::Mul(u, u, v[0], v[1]);
}
else
{
return FPInterval<FPType>::Mul(u, u, v[1], v[0]);
}
}
template <typename FPType>
FPInterval<FPType> operator*(FPInterval<FPType> const& u, FPType v)
{
FPType const zero = static_cast<FPType>(0);
if (v >= zero)
{
return FPInterval<FPType>::Mul(u[0], u[1], v, v);
}
else
{
return FPInterval<FPType>::Mul(u[1], u[0], v, v);
}
}
template <typename FPType>
FPInterval<FPType> operator*(FPInterval<FPType> const& u, FPInterval<FPType> const& v)
{
FPType const zero = static_cast<FPType>(0);
if (u[0] >= zero)
{
if (v[0] >= zero)
{
return FPInterval<FPType>::Mul(u[0], u[1], v[0], v[1]);
}
else if (v[1] <= zero)
{
return FPInterval<FPType>::Mul(u[1], u[0], v[0], v[1]);
}
else // v[0] < 0 < v[1]
{
return FPInterval<FPType>::Mul(u[1], u[1], v[0], v[1]);
}
}
else if (u[1] <= zero)
{
if (v[0] >= zero)
{
return FPInterval<FPType>::Mul(u[0], u[1], v[1], v[0]);
}
else if (v[1] <= zero)
{
return FPInterval<FPType>::Mul(u[1], u[0], v[1], v[0]);
}
else // v[0] < 0 < v[1]
{
return FPInterval<FPType>::Mul(u[0], u[0], v[1], v[0]);
}
}
else // u[0] < 0 < u[1]
{
if (v[0] >= zero)
{
return FPInterval<FPType>::Mul(u[0], u[1], v[1], v[1]);
}
else if (v[1] <= zero)
{
return FPInterval<FPType>::Mul(u[1], u[0], v[0], v[0]);
}
else // v[0] < 0 < v[1]
{
return FPInterval<FPType>::Mul2(u[0], u[1], v[0], v[1]);
}
}
}
template <typename FPType>
FPInterval<FPType>& operator*=(FPInterval<FPType>& u, FPType v)
{
u = u * v;
return u;
}
template <typename FPType>
FPInterval<FPType>& operator*=(FPInterval<FPType>& u, FPInterval<FPType> const& v)
{
u = u * v;
return u;
}
// Division operations. If the divisor FPInterval is [v0,v1] with
// v0 < 0 < v1, then the returned FPInterval is (-infinity,+infinity)
// instead of Union((-infinity,1/v0),(1/v1,+infinity)). An application
// should try to avoid this case by branching based on [v0,0] and [0,v1].
template <typename FPType>
FPInterval<FPType> operator/(FPType u, FPInterval<FPType> const& v)
{
FPType const zero = static_cast<FPType>(0);
if (v[0] > zero || v[1] < zero)
{
return u * FPInterval<FPType>::Reciprocal(v[0], v[1]);
}
else
{
if (v[0] == zero)
{
return u * FPInterval<FPType>::ReciprocalDown(v[1]);
}
else if (v[1] == zero)
{
return u * FPInterval<FPType>::ReciprocalUp(v[0]);
}
else // v[0] < 0 < v[1]
{
return FPInterval<FPType>::Reals();
}
}
}
template <typename FPType>
FPInterval<FPType> operator/(FPInterval<FPType> const& u, FPType v)
{
FPType const zero = static_cast<FPType>(0);
if (v > zero)
{
return FPInterval<FPType>::Div(u[0], u[1], v, v);
}
else if (v < zero)
{
return FPInterval<FPType>::Div(u[1], u[0], v, v);
}
else // v = 0
{
return FPInterval<FPType>::Reals();
}
}
template <typename FPType>
FPInterval<FPType> operator/(FPInterval<FPType> const& u, FPInterval<FPType> const& v)
{
FPType const zero = static_cast<FPType>(0);
if (v[0] > zero || v[1] < zero)
{
return u * FPInterval<FPType>::Reciprocal(v[0], v[1]);
}
else
{
if (v[0] == zero)
{
return u * FPInterval<FPType>::ReciprocalDown(v[1]);
}
else if (v[1] == zero)
{
return u * FPInterval<FPType>::ReciprocalUp(v[0]);
}
else // v[0] < 0 < v[1]
{
return FPInterval<FPType>::Reals();
}
}
}
template <typename FPType>
FPInterval<FPType>& operator/=(FPInterval<FPType>& u, FPType v)
{
u = u / v;
return u;
}
template <typename FPType>
FPInterval<FPType>& operator/=(FPInterval<FPType>& u, FPInterval<FPType> const& v)
{
u = u / v;
return u;
}
}