You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

150 lines
6.3 KiB

// David Eberly, Geometric Tools, Redmond WA 98052
// Copyright (c) 1998-2021
// Distributed under the Boost Software License, Version 1.0.
// https://www.boost.org/LICENSE_1_0.txt
// https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
// Version: 4.0.2019.08.13
#pragma once
#include <Mathematics/DCPQuery.h>
#include <Mathematics/LCPSolver.h>
#include <Mathematics/OrientedBox.h>
#include <Mathematics/Rectangle.h>
#include <Mathematics/Vector3.h>
// Compute the distance between a rectangle and an oriented box in 3D. The
// algorithm is based on using an LCP solver for the convex quadratic
// programming problem. For details, see
// https://www.geometrictools.com/Documentation/ConvexQuadraticProgramming.pdf
namespace gte
{
template <typename Real>
class DCPQuery<Real, Rectangle3<Real>, OrientedBox3<Real>>
{
public:
struct Result
{
bool queryIsSuccessful;
// These members are valid only when queryIsSuccessful is true;
// otherwise, they are all set to zero.
Real distance, sqrDistance;
std::array<Real, 2> rectangleParameter;
std::array<Real, 3> boxParameter;
Vector3<Real> closestPoint[2];
// The number of iterations used by LCPSolver regardless of
// whether the query is successful.
int numLCPIterations;
};
// The default maximum iterations is 81 (n = 9, maxIterations = n*n).
// If the solver fails to converge, try increasing the maximum number
// of iterations.
void SetMaxLCPIterations(int maxLCPIterations)
{
mLCP.SetMaxIterations(maxLCPIterations);
}
Result operator()(Rectangle3<Real> const& rectangle, OrientedBox3<Real> const& box)
{
Result result;
// Rigidly transform the rectangle and oriented box so that the
// oriented box becomes a canonical box.
Vector3<Real> K = box.extent * (Real)2;
Vector3<Real> tempV = rectangle.center - box.center;
Vector3<Real> V, E0, E1;
for (int i = 0; i < 3; ++i)
{
V[i] = Dot(box.axis[i], tempV) + box.extent[i];
E0[i] = Dot(box.axis[i], rectangle.axis[0]);
E1[i] = Dot(box.axis[i], rectangle.axis[1]);
}
// Convert the oriented rectangle to a regular one (origin at a
// corner).
Vector3<Real> scaledE0 = E0 * rectangle.extent[0];
Vector3<Real> scaledE1 = E1 * rectangle.extent[1];
V -= scaledE0 + scaledE1;
E0 = scaledE0 * (Real)2;
E1 = scaledE1 * (Real)2;
// Compute quantities to initialize q and M in the LCP.
Real dotVE0 = Dot(V, E0);
Real dotVE1 = Dot(V, E1);
Real dotE0E0 = Dot(E0, E0);
Real dotE1E1 = Dot(E1, E1);
// The LCP has 5 variables and 5 (nontrivial) inequality
// constraints.
std::array<Real, 10> q =
{
-V[0], -V[1], -V[2], dotVE0, dotVE1, K[0], K[1], K[2], (Real)1, (Real)1
};
std::array<std::array<Real, 10>, 10> M;
M[0] = { (Real)1, (Real)0, (Real)0, -E0[0], -E1[0], (Real)1, (Real)0, (Real)0, (Real)0, (Real)0 };
M[1] = { (Real)0, (Real)1, (Real)0, -E0[1], -E1[1], (Real)0, (Real)1, (Real)0, (Real)0, (Real)0 };
M[2] = { (Real)0, (Real)0, (Real)1, -E0[2], -E1[2], (Real)0, (Real)0, (Real)1, (Real)0 , (Real)0 };
M[3] = { -E0[0], -E0[1], -E0[2], dotE0E0, (Real)0, (Real)0, (Real)0, (Real)0, (Real)1, (Real)0 };
M[4] = { -E1[0], -E1[1], -E1[2], (Real)0, dotE1E1, (Real)0, (Real)0, (Real)0, (Real)0, (Real)1 };
M[5] = { (Real)-1, (Real)0, (Real)0, (Real)0, (Real)0, (Real)0, (Real)0, (Real)0, (Real)0, (Real)0 };
M[6] = { (Real)0, (Real)-1, (Real)0, (Real)0, (Real)0, (Real)0, (Real)0, (Real)0, (Real)0, (Real)0 };
M[7] = { (Real)0, (Real)0, (Real)-1, (Real)0, (Real)0, (Real)0, (Real)0, (Real)0, (Real)0, (Real)0 };
M[8] = { (Real)0, (Real)0, (Real)0, (Real)-1, (Real)0, (Real)0, (Real)0, (Real)0, (Real)0, (Real)0 };
M[9] = { (Real)0, (Real)0, (Real)0, (Real)0, (Real)-1, (Real)0, (Real)0, (Real)0, (Real)0, (Real)0 };
std::array<Real, 10> w, z;
if (mLCP.Solve(q, M, w, z))
{
result.queryIsSuccessful = true;
Real t0 = (z[3] * (Real)2 - (Real)1) * rectangle.extent[0];
Real t1 = (z[4] * (Real)2 - (Real)1) * rectangle.extent[1];
result.rectangleParameter[0] = t0;
result.rectangleParameter[1] = t1;
result.closestPoint[0] = rectangle.center + t0 * rectangle.axis[0] + t1 * rectangle.axis[1];
result.closestPoint[1] = box.center;
for (int i = 0; i < 3; ++i)
{
result.boxParameter[i] = z[i] - box.extent[i];
result.closestPoint[1] += result.boxParameter[i] * box.axis[i];
}
Vector3<Real> diff = result.closestPoint[1] - result.closestPoint[0];
result.sqrDistance = Dot(diff, diff);
result.distance = std::sqrt(result.sqrDistance);
}
else
{
// If you reach this case, the maximum number of iterations
// was not specified to be large enough or there is a problem
// due to floating-point rounding errors. If you believe the
// latter is true, file a bug report.
result.queryIsSuccessful = false;
for (int i = 0; i < 2; ++i)
{
result.rectangleParameter[i] = (Real)0;
}
for (int i = 0; i < 3; ++i)
{
result.boxParameter[i] = (Real)0;
result.closestPoint[0][i] = (Real)0;
result.closestPoint[1][i] = (Real)0;
}
result.distance = (Real)0;
result.sqrDistance = (Real)0;
}
result.numLCPIterations = mLCP.GetNumIterations();
return result;
}
private:
LCPSolver<Real, 10> mLCP;
};
}