You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
157 lines
6.0 KiB
157 lines
6.0 KiB
// David Eberly, Geometric Tools, Redmond WA 98052
|
|
// Copyright (c) 1998-2021
|
|
// Distributed under the Boost Software License, Version 1.0.
|
|
// https://www.boost.org/LICENSE_1_0.txt
|
|
// https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
|
|
// Version: 4.0.2019.08.13
|
|
|
|
#pragma once
|
|
|
|
#include <Mathematics/DCPQuery.h>
|
|
#include <Mathematics/LCPSolver.h>
|
|
#include <Mathematics/OrientedBox.h>
|
|
#include <Mathematics/Vector3.h>
|
|
|
|
// Compute the distance between oriented boxes in 3D. The algorithm is based
|
|
// on using an LCP solver for the convex quadratic programming problem. For
|
|
// details, see
|
|
// https://www.geometrictools.com/Documentation/ConvexQuadraticProgramming.pdf
|
|
|
|
namespace gte
|
|
{
|
|
template <typename Real>
|
|
class DCPQuery<Real, OrientedBox3<Real>, OrientedBox3<Real>>
|
|
{
|
|
public:
|
|
struct Result
|
|
{
|
|
bool queryIsSuccessful;
|
|
|
|
// These members are valid only when queryIsSuccessful is true;
|
|
// otherwise, they are all set to zero.
|
|
Real distance, sqrDistance;
|
|
std::array<Real, 3> box0Parameter, box1Parameter;
|
|
Vector3<Real> closestPoint[2];
|
|
|
|
// The number of iterations used by LCPSolver regardless of
|
|
// whether the query is successful.
|
|
int numLCPIterations;
|
|
};
|
|
|
|
// Default maximum iterations is 144 (n = 12, maxIterations = n*n).
|
|
// If the solver fails to converge, try increasing the maximum number
|
|
// of iterations.
|
|
void SetMaxLCPIterations(int maxLCPIterations)
|
|
{
|
|
mLCP.SetMaxIterations(maxLCPIterations);
|
|
}
|
|
|
|
Result operator()(OrientedBox3<Real> const& box0, OrientedBox3<Real> const& box1)
|
|
{
|
|
Result result;
|
|
|
|
// Translate the center of box0 to the origin. Modify the
|
|
// oriented box coefficients to be nonnegative.
|
|
Vector3<Real> delta = box1.center - box0.center;
|
|
for (int i = 0; i < 3; ++i)
|
|
{
|
|
delta += box0.extent[i] * box0.axis[i];
|
|
delta -= box1.extent[i] * box1.axis[i];
|
|
}
|
|
|
|
Vector3<Real> R0Delta, R1Delta;
|
|
for (int i = 0; i < 3; ++i)
|
|
{
|
|
R0Delta[i] = Dot(box0.axis[i], delta);
|
|
R1Delta[i] = Dot(box1.axis[i], delta);
|
|
}
|
|
|
|
std::array<std::array<Real, 3>, 3> R0TR1;
|
|
for (int r = 0; r < 3; ++r)
|
|
{
|
|
for (int c = 0; c < 3; ++c)
|
|
{
|
|
R0TR1[r][c] = Dot(box0.axis[r], box1.axis[c]);
|
|
}
|
|
}
|
|
|
|
Vector3<Real> twoExtent0 = box0.extent * (Real)2;
|
|
Vector3<Real> twoExtent1 = box1.extent * (Real)2;
|
|
|
|
// The LCP has 6 variables and 6 (nontrivial) inequality
|
|
// constraints.
|
|
std::array<Real, 12> q =
|
|
{
|
|
-R0Delta[0], -R0Delta[1], -R0Delta[2], R1Delta[0], R1Delta[1], R1Delta[2],
|
|
twoExtent0[0], twoExtent0[1], twoExtent0[2], twoExtent1[0], twoExtent1[1], twoExtent1[2]
|
|
};
|
|
|
|
std::array<std::array<Real, 12>, 12> M;
|
|
{
|
|
Real const z = (Real)0;
|
|
Real const p = (Real)1;
|
|
Real const m = (Real)-1;
|
|
M[0] = { p, z, z, -R0TR1[0][0], -R0TR1[0][1], -R0TR1[0][2], p, z, z, z, z, z };
|
|
M[1] = { z, p, z, -R0TR1[1][0], -R0TR1[1][1], -R0TR1[1][2], z, p, z, z, z, z };
|
|
M[2] = { z, z, p, -R0TR1[2][0], -R0TR1[2][1], -R0TR1[2][2], z, z, p, z, z, z };
|
|
M[3] = { -R0TR1[0][0], -R0TR1[1][0], -R0TR1[2][0], p, z, z, z, z, z, p, z, z };
|
|
M[4] = { -R0TR1[0][1], -R0TR1[1][1], -R0TR1[2][1], z, p, z, z, z, z, z, p, z };
|
|
M[5] = { -R0TR1[0][2], -R0TR1[1][2], -R0TR1[2][2], z, z, p, z, z, z, z, z, p };
|
|
M[6] = { m, z, z, z, z, z, z, z, z, z, z, z };
|
|
M[7] = { z, m, z, z, z, z, z, z, z, z, z, z };
|
|
M[8] = { z, z, m, z, z, z, z, z, z, z, z, z };
|
|
M[9] = { z, z, z, m, z, z, z, z, z, z, z, z };
|
|
M[10] = { z, z, z, z, m, z, z, z, z, z, z, z };
|
|
M[11] = { z, z, z, z, z, m, z, z, z, z, z, z };
|
|
}
|
|
|
|
std::array<Real, 12> w, z;
|
|
if (mLCP.Solve(q, M, w, z))
|
|
{
|
|
result.queryIsSuccessful = true;
|
|
|
|
result.closestPoint[0] = box0.center;
|
|
for (int i = 0; i < 3; ++i)
|
|
{
|
|
result.box0Parameter[i] = z[i] - box0.extent[i];
|
|
result.closestPoint[0] += result.box0Parameter[i] * box0.axis[i];
|
|
}
|
|
|
|
result.closestPoint[1] = box1.center;
|
|
for (int i = 0, j = 3; i < 3; ++i, ++j)
|
|
{
|
|
result.box1Parameter[i] = z[j] - box1.extent[i];
|
|
result.closestPoint[1] += result.box1Parameter[i] * box1.axis[i];
|
|
}
|
|
|
|
Vector3<Real> diff = result.closestPoint[1] - result.closestPoint[0];
|
|
result.sqrDistance = Dot(diff, diff);
|
|
result.distance = std::sqrt(result.sqrDistance);
|
|
}
|
|
else
|
|
{
|
|
// If you reach this case, the maximum number of iterations
|
|
// was not specified to be large enough or there is a problem
|
|
// due to floating-point rounding errors. If you believe the
|
|
// latter is true, file a bug report.
|
|
result.queryIsSuccessful = false;
|
|
|
|
for (int i = 0; i < 3; ++i)
|
|
{
|
|
result.box0Parameter[i] = (Real)0;
|
|
result.box1Parameter[i] = (Real)0;
|
|
result.closestPoint[0][i] = (Real)0;
|
|
result.closestPoint[1][i] = (Real)0;
|
|
}
|
|
result.distance = (Real)0;
|
|
result.sqrDistance = (Real)0;
|
|
}
|
|
|
|
result.numLCPIterations = mLCP.GetNumIterations();
|
|
return result;
|
|
}
|
|
|
|
private:
|
|
LCPSolver<Real, 12> mLCP;
|
|
};
|
|
}
|
|
|