You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
216 lines
7.7 KiB
216 lines
7.7 KiB
// David Eberly, Geometric Tools, Redmond WA 98052
|
|
// Copyright (c) 1998-2021
|
|
// Distributed under the Boost Software License, Version 1.0.
|
|
// https://www.boost.org/LICENSE_1_0.txt
|
|
// https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
|
|
// Version: 4.0.2019.08.13
|
|
|
|
#pragma once
|
|
|
|
#include <array>
|
|
#include <cmath>
|
|
#include <cstdint>
|
|
|
|
// An implementation of the QR algorithm described in "Matrix Computations,
|
|
// 2nd edition" by G. H. Golub and C. F. Van Loan, The Johns Hopkins
|
|
// University Press, Baltimore MD, Fourth Printing 1993. In particular,
|
|
// the implementation is based on Chapter 7 (The Unsymmetric Eigenvalue
|
|
// Problem), Section 7.5 (The Practical QR Algorithm). The algorithm is
|
|
// specialized for the companion matrix associated with a cubic polynomial.
|
|
|
|
namespace gte
|
|
{
|
|
template <typename Real>
|
|
class CubicRootsQR
|
|
{
|
|
public:
|
|
typedef std::array<std::array<Real, 3>, 3> Matrix;
|
|
|
|
// Solve p(x) = c0 + c1 * x + c2 * x^2 + x^3 = 0.
|
|
uint32_t operator() (uint32_t maxIterations, Real c0, Real c1, Real c2,
|
|
uint32_t& numRoots, std::array<Real, 3>& roots) const
|
|
{
|
|
// Create the companion matrix for the polynomial. The matrix is
|
|
// in upper Hessenberg form.
|
|
Matrix A;
|
|
A[0][0] = (Real)0;
|
|
A[0][1] = (Real)0;
|
|
A[0][2] = -c0;
|
|
A[1][0] = (Real)1;
|
|
A[1][1] = (Real)0;
|
|
A[1][2] = -c1;
|
|
A[2][0] = (Real)0;
|
|
A[2][1] = (Real)1;
|
|
A[2][2] = -c2;
|
|
|
|
// Avoid the QR-cycle when c1 = c2 = 0 and avoid the slow
|
|
// convergence when c1 and c2 are nearly zero.
|
|
std::array<Real, 3> V{
|
|
(Real)1,
|
|
(Real)0.36602540378443865,
|
|
(Real)0.36602540378443865 };
|
|
DoIteration(V, A);
|
|
|
|
return operator()(maxIterations, A, numRoots, roots);
|
|
}
|
|
|
|
// Compute the real eigenvalues of the upper Hessenberg matrix A. The
|
|
// matrix is modified by in-place operations, so if you need to remember
|
|
// A, you must make your own copy before calling this function.
|
|
uint32_t operator() (uint32_t maxIterations, Matrix& A,
|
|
uint32_t& numRoots, std::array<Real, 3>& roots) const
|
|
{
|
|
numRoots = 0;
|
|
std::fill(roots.begin(), roots.end(), (Real)0);
|
|
|
|
for (uint32_t numIterations = 0; numIterations < maxIterations; ++numIterations)
|
|
{
|
|
// Apply a Francis QR iteration.
|
|
Real tr = A[1][1] + A[2][2];
|
|
Real det = A[1][1] * A[2][2] - A[1][2] * A[2][1];
|
|
std::array<Real, 3> X{
|
|
A[0][0] * A[0][0] + A[0][1] * A[1][0] - tr * A[0][0] + det,
|
|
A[1][0] * (A[0][0] + A[1][1] - tr),
|
|
A[1][0] * A[2][1] };
|
|
std::array<Real, 3> V = House<3>(X);
|
|
DoIteration(V, A);
|
|
|
|
// Test for uncoupling of A.
|
|
Real tr01 = A[0][0] + A[1][1];
|
|
if (tr01 + A[1][0] == tr01)
|
|
{
|
|
numRoots = 1;
|
|
roots[0] = A[0][0];
|
|
GetQuadraticRoots(1, 2, A, numRoots, roots);
|
|
return numIterations;
|
|
}
|
|
|
|
Real tr12 = A[1][1] + A[2][2];
|
|
if (tr12 + A[2][1] == tr12)
|
|
{
|
|
numRoots = 1;
|
|
roots[0] = A[2][2];
|
|
GetQuadraticRoots(0, 1, A, numRoots, roots);
|
|
return numIterations;
|
|
}
|
|
}
|
|
return maxIterations;
|
|
}
|
|
|
|
private:
|
|
void DoIteration(std::array<Real, 3> const& V, Matrix& A) const
|
|
{
|
|
Real multV = (Real)-2 / (V[0] * V[0] + V[1] * V[1] + V[2] * V[2]);
|
|
std::array<Real, 3> MV{ multV * V[0], multV * V[1], multV * V[2] };
|
|
RowHouse<3>(0, 2, 0, 2, V, MV, A);
|
|
ColHouse<3>(0, 2, 0, 2, V, MV, A);
|
|
|
|
std::array<Real, 2> Y{ A[1][0], A[2][0] };
|
|
std::array<Real, 2> W = House<2>(Y);
|
|
Real multW = (Real)-2 / (W[0] * W[0] + W[1] * W[1]);
|
|
std::array<Real, 2> MW{ multW * W[0], multW * W[1] };
|
|
RowHouse<2>(1, 2, 0, 2, W, MW, A);
|
|
ColHouse<2>(0, 2, 1, 2, W, MW, A);
|
|
}
|
|
|
|
template <int N>
|
|
std::array<Real, N> House(std::array<Real, N> const& X) const
|
|
{
|
|
std::array<Real, N> V;
|
|
Real length = (Real)0;
|
|
for (int i = 0; i < N; ++i)
|
|
{
|
|
length += X[i] * X[i];
|
|
}
|
|
length = std::sqrt(length);
|
|
if (length != (Real)0)
|
|
{
|
|
Real sign = (X[0] >= (Real)0 ? (Real)1 : (Real)-1);
|
|
Real denom = X[0] + sign * length;
|
|
for (int i = 1; i < N; ++i)
|
|
{
|
|
V[i] = X[i] / denom;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
V.fill((Real)0);
|
|
}
|
|
V[0] = (Real)1;
|
|
return V;
|
|
}
|
|
|
|
template <int N>
|
|
void RowHouse(int rmin, int rmax, int cmin, int cmax,
|
|
std::array<Real, N> const& V, std::array<Real, N> const& MV, Matrix& A) const
|
|
{
|
|
// Only the elements cmin through cmax are used.
|
|
std::array<Real, 3> W;
|
|
|
|
for (int c = cmin; c <= cmax; ++c)
|
|
{
|
|
W[c] = (Real)0;
|
|
for (int r = rmin, k = 0; r <= rmax; ++r, ++k)
|
|
{
|
|
W[c] += V[k] * A[r][c];
|
|
}
|
|
}
|
|
|
|
for (int r = rmin, k = 0; r <= rmax; ++r, ++k)
|
|
{
|
|
for (int c = cmin; c <= cmax; ++c)
|
|
{
|
|
A[r][c] += MV[k] * W[c];
|
|
}
|
|
}
|
|
}
|
|
|
|
template <int N>
|
|
void ColHouse(int rmin, int rmax, int cmin, int cmax,
|
|
std::array<Real, N> const& V, std::array<Real, N> const& MV, Matrix& A) const
|
|
{
|
|
// Only elements rmin through rmax are used.
|
|
std::array<Real, 3> W;
|
|
|
|
for (int r = rmin; r <= rmax; ++r)
|
|
{
|
|
W[r] = (Real)0;
|
|
for (int c = cmin, k = 0; c <= cmax; ++c, ++k)
|
|
{
|
|
W[r] += V[k] * A[r][c];
|
|
}
|
|
}
|
|
|
|
for (int r = rmin; r <= rmax; ++r)
|
|
{
|
|
for (int c = cmin, k = 0; c <= cmax; ++c, ++k)
|
|
{
|
|
A[r][c] += W[r] * MV[k];
|
|
}
|
|
}
|
|
}
|
|
|
|
void GetQuadraticRoots(int i0, int i1, Matrix const& A,
|
|
uint32_t& numRoots, std::array<Real, 3>& roots) const
|
|
{
|
|
// Solve x^2 - t * x + d = 0, where t is the trace and d is the
|
|
// determinant of the 2x2 matrix defined by indices i0 and i1.
|
|
// The discriminant is D = (t/2)^2 - d. When D >= 0, the roots
|
|
// are real values t/2 - sqrt(D) and t/2 + sqrt(D). To avoid
|
|
// potential numerical issues with subtractive cancellation, the
|
|
// roots are computed as
|
|
// r0 = t/2 + sign(t/2)*sqrt(D), r1 = trace - r0.
|
|
Real trace = A[i0][i0] + A[i1][i1];
|
|
Real halfTrace = trace * (Real)0.5;
|
|
Real determinant = A[i0][i0] * A[i1][i1] - A[i0][i1] * A[i1][i0];
|
|
Real discriminant = halfTrace * halfTrace - determinant;
|
|
if (discriminant >= (Real)0)
|
|
{
|
|
Real sign = (trace >= (Real)0 ? (Real)1 : (Real)-1);
|
|
Real root = halfTrace + sign * std::sqrt(discriminant);
|
|
roots[numRoots++] = root;
|
|
roots[numRoots++] = trace - root;
|
|
}
|
|
}
|
|
};
|
|
}
|
|
|