You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

170 lines
6.7 KiB

// David Eberly, Geometric Tools, Redmond WA 98052
// Copyright (c) 1998-2021
// Distributed under the Boost Software License, Version 1.0.
// https://www.boost.org/LICENSE_1_0.txt
// https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
// Version: 4.0.2019.08.13
#pragma once
#include <Mathematics/Hypersphere.h>
#include <Mathematics/Vector3.h>
// Least-squares fit of a sphere to a set of points. The algorithms are
// described in Section 5 of
// https://www.geometrictools.com/Documentation/LeastSquaresFitting.pdf
// FitUsingLengths uses the algorithm of Section 5.1.
// FitUsingSquaredLengths uses the algorithm of Section 5.2.
namespace gte
{
template <typename Real>
class ApprSphere3
{
public:
// The return value is 'true' when the linear system of the algorithm
// is solvable, 'false' otherwise. If 'false' is returned, the sphere
// center and radius are set to zero values.
bool FitUsingSquaredLengths(int numPoints, Vector3<Real> const* points, Sphere3<Real>& sphere)
{
// Compute the average of the data points.
Real const zero(0);
Vector3<Real> A = { zero, zero, zero };
for (int i = 0; i < numPoints; ++i)
{
A += points[i];
}
Real invNumPoints = ((Real)1) / static_cast<Real>(numPoints);
A *= invNumPoints;
// Compute the covariance matrix M of the Y[i] = X[i]-A and the
// right-hand side R of the linear system M*(C-A) = R.
Real M00 = zero, M01 = zero, M02 = zero, M11 = zero, M12 = zero, M22 = zero;
Vector3<Real> R = { zero, zero, zero };
for (int i = 0; i < numPoints; ++i)
{
Vector3<Real> Y = points[i] - A;
Real Y0Y0 = Y[0] * Y[0];
Real Y0Y1 = Y[0] * Y[1];
Real Y0Y2 = Y[0] * Y[2];
Real Y1Y1 = Y[1] * Y[1];
Real Y1Y2 = Y[1] * Y[2];
Real Y2Y2 = Y[2] * Y[2];
M00 += Y0Y0;
M01 += Y0Y1;
M02 += Y0Y2;
M11 += Y1Y1;
M12 += Y1Y2;
M22 += Y2Y2;
R += (Y0Y0 + Y1Y1 + Y2Y2) * Y;
}
R *= (Real)0.5;
// Solve the linear system M*(C-A) = R for the center C.
Real cof00 = M11 * M22 - M12 * M12;
Real cof01 = M02 * M12 - M01 * M22;
Real cof02 = M01 * M12 - M02 * M11;
Real det = M00 * cof00 + M01 * cof01 + M02 * cof02;
if (det != zero)
{
Real cof11 = M00 * M22 - M02 * M02;
Real cof12 = M01 * M02 - M00 * M12;
Real cof22 = M00 * M11 - M01 * M01;
sphere.center[0] = A[0] + (cof00 * R[0] + cof01 * R[1] + cof02 * R[2]) / det;
sphere.center[1] = A[1] + (cof01 * R[0] + cof11 * R[1] + cof12 * R[2]) / det;
sphere.center[2] = A[2] + (cof02 * R[0] + cof12 * R[1] + cof22 * R[2]) / det;
Real rsqr = zero;
for (int i = 0; i < numPoints; ++i)
{
Vector3<Real> delta = points[i] - sphere.center;
rsqr += Dot(delta, delta);
}
rsqr *= invNumPoints;
sphere.radius = std::sqrt(rsqr);
return true;
}
else
{
sphere.center = { zero, zero, zero };
sphere.radius = zero;
return false;
}
}
// Fit the points using lengths to drive the least-squares algorithm.
// If initialCenterIsAverage is set to 'false', the initial guess for
// the initial sphere center is computed as the average of the data
// points. If the data points are clustered along a small solid angle,
// the algorithm is slow to converge. If initialCenterIsAverage is set
// to 'true', the incoming sphere center is used as-is to start the
// iterative algorithm. This approach tends to converge more rapidly
// than when using the average of points but can be much slower than
// FitUsingSquaredLengths.
//
// The value epsilon may be chosen as a positive number for the
// comparison of consecutive estimated sphere centers, terminating the
// iterations when the center difference has length less than or equal
// to epsilon.
//
// The return value is the number of iterations used. If is is the
// input maxIterations, you can either accept the result or polish the
// result by calling the function again with initialCenterIsAverage
// set to 'true'.
unsigned int FitUsingLengths(int numPoints, Vector3<Real> const* points,
unsigned int maxIterations, bool initialCenterIsAverage,
Sphere3<Real>& sphere, Real epsilon = (Real)0)
{
// Compute the average of the data points.
Vector3<Real> average = points[0];
for (int i = 1; i < numPoints; ++i)
{
average += points[i];
}
Real invNumPoints = ((Real)1) / static_cast<Real>(numPoints);
average *= invNumPoints;
// The initial guess for the center.
if (initialCenterIsAverage)
{
sphere.center = average;
}
Real epsilonSqr = epsilon * epsilon;
unsigned int iteration;
for (iteration = 0; iteration < maxIterations; ++iteration)
{
// Update the iterates.
Vector3<Real> current = sphere.center;
// Compute average L, dL/da, dL/db, dL/dc.
Real lenAverage = (Real)0;
Vector3<Real> derLenAverage = Vector3<Real>::Zero();
for (int i = 0; i < numPoints; ++i)
{
Vector3<Real> diff = points[i] - sphere.center;
Real length = Length(diff);
if (length > (Real)0)
{
lenAverage += length;
Real invLength = ((Real)1) / length;
derLenAverage -= invLength * diff;
}
}
lenAverage *= invNumPoints;
derLenAverage *= invNumPoints;
sphere.center = average + lenAverage * derLenAverage;
sphere.radius = lenAverage;
Vector3<Real> diff = sphere.center - current;
Real diffSqrLen = Dot(diff, diff);
if (diffSqrLen <= epsilonSqr)
{
break;
}
}
return ++iteration;
}
};
}