You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
273 lines
9.0 KiB
273 lines
9.0 KiB
// David Eberly, Geometric Tools, Redmond WA 98052
|
|
// Copyright (c) 1998-2021
|
|
// Distributed under the Boost Software License, Version 1.0.
|
|
// https://www.boost.org/LICENSE_1_0.txt
|
|
// https://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
|
|
// Version: 4.0.2019.08.13
|
|
|
|
#pragma once
|
|
|
|
#include <Mathematics/GMatrix.h>
|
|
#include <array>
|
|
|
|
// WARNING. The implementation allows you to transform the inputs (x,y) to
|
|
// the unit square and perform the interpolation in that space. The idea is
|
|
// to keep the floating-point numbers to order 1 for numerical stability of
|
|
// the algorithm. The classical thin-plate spline algorithm does not include
|
|
// this transformation. The interpolation is invariant to translations and
|
|
// rotations of (x,y) but not to scaling. The following document is about
|
|
// thin plate splines.
|
|
// https://www.geometrictools.com/Documentation/ThinPlateSplines.pdf
|
|
|
|
namespace gte
|
|
{
|
|
template <typename Real>
|
|
class IntpThinPlateSpline2
|
|
{
|
|
public:
|
|
// Construction. Data points are (x,y,f(x,y)). The smoothing
|
|
// parameter must be nonnegative.
|
|
IntpThinPlateSpline2(int numPoints, Real const* X, Real const* Y,
|
|
Real const* F, Real smooth, bool transformToUnitSquare)
|
|
:
|
|
mNumPoints(numPoints),
|
|
mX(numPoints),
|
|
mY(numPoints),
|
|
mSmooth(smooth),
|
|
mA(numPoints),
|
|
mInitialized(false)
|
|
{
|
|
LogAssert(numPoints >= 3 && X != nullptr && Y != nullptr &&
|
|
F != nullptr && smooth >= (Real)0, "Invalid input.");
|
|
|
|
int i, row, col;
|
|
|
|
if (transformToUnitSquare)
|
|
{
|
|
// Map input (x,y) to unit square. This is not part of the
|
|
// classical thin-plate spline algorithm because the
|
|
// interpolation is not invariant to scalings.
|
|
auto extreme = std::minmax_element(X, X + mNumPoints);
|
|
mXMin = *extreme.first;
|
|
mXMax = *extreme.second;
|
|
mXInvRange = (Real)1 / (mXMax - mXMin);
|
|
for (i = 0; i < mNumPoints; ++i)
|
|
{
|
|
mX[i] = (X[i] - mXMin) * mXInvRange;
|
|
}
|
|
|
|
extreme = std::minmax_element(Y, Y + mNumPoints);
|
|
mYMin = *extreme.first;
|
|
mYMax = *extreme.second;
|
|
mYInvRange = (Real)1 / (mYMax - mYMin);
|
|
for (i = 0; i < mNumPoints; ++i)
|
|
{
|
|
mY[i] = (Y[i] - mYMin) * mYInvRange;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// The classical thin-plate spline uses the data as is. The
|
|
// values mXMax and mYMax are not used, but they are
|
|
// initialized anyway (to irrelevant numbers).
|
|
mXMin = (Real)0;
|
|
mXMax = (Real)1;
|
|
mXInvRange = (Real)1;
|
|
mYMin = (Real)0;
|
|
mYMax = (Real)1;
|
|
mYInvRange = (Real)1;
|
|
std::copy(X, X + mNumPoints, mX.begin());
|
|
std::copy(Y, Y + mNumPoints, mY.begin());
|
|
}
|
|
|
|
// Compute matrix A = M + lambda*I [NxN matrix].
|
|
GMatrix<Real> AMat(mNumPoints, mNumPoints);
|
|
for (row = 0; row < mNumPoints; ++row)
|
|
{
|
|
for (col = 0; col < mNumPoints; ++col)
|
|
{
|
|
if (row == col)
|
|
{
|
|
AMat(row, col) = mSmooth;
|
|
}
|
|
else
|
|
{
|
|
Real dx = mX[row] - mX[col];
|
|
Real dy = mY[row] - mY[col];
|
|
Real t = std::sqrt(dx * dx + dy * dy);
|
|
AMat(row, col) = Kernel(t);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Compute matrix B [Nx3 matrix].
|
|
GMatrix<Real> BMat(mNumPoints, 3);
|
|
for (row = 0; row < mNumPoints; ++row)
|
|
{
|
|
BMat(row, 0) = (Real)1;
|
|
BMat(row, 1) = mX[row];
|
|
BMat(row, 2) = mY[row];
|
|
}
|
|
|
|
// Compute A^{-1}.
|
|
bool invertible;
|
|
GMatrix<Real> invAMat = Inverse(AMat, &invertible);
|
|
if (!invertible)
|
|
{
|
|
return;
|
|
}
|
|
|
|
// Compute P = B^T A^{-1} [3xN matrix].
|
|
GMatrix<Real> PMat = MultiplyATB(BMat, invAMat);
|
|
|
|
// Compute Q = P B = B^T A^{-1} B [3x3 matrix].
|
|
GMatrix<Real> QMat = PMat * BMat;
|
|
|
|
// Compute Q^{-1}.
|
|
GMatrix<Real> invQMat = Inverse(QMat, &invertible);
|
|
if (!invertible)
|
|
{
|
|
return;
|
|
}
|
|
|
|
// Compute P*z.
|
|
std::array<Real, 3> prod;
|
|
for (row = 0; row < 3; ++row)
|
|
{
|
|
prod[row] = (Real)0;
|
|
for (i = 0; i < mNumPoints; ++i)
|
|
{
|
|
prod[row] += PMat(row, i) * F[i];
|
|
}
|
|
}
|
|
|
|
// Compute 'b' vector for smooth thin plate spline.
|
|
for (row = 0; row < 3; ++row)
|
|
{
|
|
mB[row] = (Real)0;
|
|
for (i = 0; i < 3; ++i)
|
|
{
|
|
mB[row] += invQMat(row, i) * prod[i];
|
|
}
|
|
}
|
|
|
|
// Compute z-B*b.
|
|
std::vector<Real> tmp(mNumPoints);
|
|
for (row = 0; row < mNumPoints; ++row)
|
|
{
|
|
tmp[row] = F[row];
|
|
for (i = 0; i < 3; ++i)
|
|
{
|
|
tmp[row] -= BMat(row, i) * mB[i];
|
|
}
|
|
}
|
|
|
|
// Compute 'a' vector for smooth thin plate spline.
|
|
for (row = 0; row < mNumPoints; ++row)
|
|
{
|
|
mA[row] = (Real)0;
|
|
for (i = 0; i < mNumPoints; ++i)
|
|
{
|
|
mA[row] += invAMat(row, i) * tmp[i];
|
|
}
|
|
}
|
|
|
|
mInitialized = true;
|
|
}
|
|
|
|
// Check this after the constructor call to see whether the thin plate
|
|
// spline coefficients were successfully computed. If so, then calls
|
|
// to operator()(Real,Real) will work properly. TODO: This needs to
|
|
// be removed because the constructor now throws exceptions?
|
|
inline bool IsInitialized() const
|
|
{
|
|
return mInitialized;
|
|
}
|
|
|
|
// Evaluate the interpolator. If IsInitialized() returns 'false', the
|
|
// operator will return std::numeric_limits<Real>::max().
|
|
Real operator()(Real x, Real y) const
|
|
{
|
|
if (mInitialized)
|
|
{
|
|
// Map (x,y) to the unit square.
|
|
x = (x - mXMin) * mXInvRange;
|
|
y = (y - mYMin) * mYInvRange;
|
|
|
|
Real result = mB[0] + mB[1] * x + mB[2] * y;
|
|
for (int i = 0; i < mNumPoints; ++i)
|
|
{
|
|
Real dx = x - mX[i];
|
|
Real dy = y - mY[i];
|
|
Real t = std::sqrt(dx * dx + dy * dy);
|
|
result += mA[i] * Kernel(t);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
return std::numeric_limits<Real>::max();
|
|
}
|
|
|
|
// Compute the functional value a^T*M*a when lambda is zero or
|
|
// lambda*w^T*(M+lambda*I)*w when lambda is positive. See the thin
|
|
// plate splines PDF for a description of these quantities.
|
|
Real ComputeFunctional() const
|
|
{
|
|
Real functional = (Real)0;
|
|
for (int row = 0; row < mNumPoints; ++row)
|
|
{
|
|
for (int col = 0; col < mNumPoints; ++col)
|
|
{
|
|
if (row == col)
|
|
{
|
|
functional += mSmooth * mA[row] * mA[col];
|
|
}
|
|
else
|
|
{
|
|
Real dx = mX[row] - mX[col];
|
|
Real dy = mY[row] - mY[col];
|
|
Real t = std::sqrt(dx * dx + dy * dy);
|
|
functional += Kernel(t) * mA[row] * mA[col];
|
|
}
|
|
}
|
|
}
|
|
|
|
if (mSmooth > (Real)0)
|
|
{
|
|
functional *= mSmooth;
|
|
}
|
|
|
|
return functional;
|
|
}
|
|
|
|
private:
|
|
// Kernel(t) = t^2 * log(t^2)
|
|
static Real Kernel(Real t)
|
|
{
|
|
if (t > (Real)0)
|
|
{
|
|
Real t2 = t * t;
|
|
return t2 * std::log(t2);
|
|
}
|
|
return (Real)0;
|
|
}
|
|
|
|
// Input data.
|
|
int mNumPoints;
|
|
std::vector<Real> mX;
|
|
std::vector<Real> mY;
|
|
Real mSmooth;
|
|
|
|
// Thin plate spline coefficients. The A[] coefficients are associated
|
|
// with the Green's functions G(x,y,*) and the B[] coefficients are
|
|
// associated with the affine term B[0] + B[1]*x + B[2]*y.
|
|
std::vector<Real> mA; // mNumPoints elements
|
|
std::array<Real, 3> mB;
|
|
|
|
// Extent of input data.
|
|
Real mXMin, mXMax, mXInvRange;
|
|
Real mYMin, mYMax, mYInvRange;
|
|
|
|
bool mInitialized;
|
|
};
|
|
}
|
|
|