Browse Source

refactor: config配net

main
mckay 4 months ago
parent
commit
eff305e802
  1. 18
      brep2sdf/config/default_config.py
  2. 153
      brep2sdf/networks/encoder.py

18
brep2sdf/config/default_config.py

@ -4,15 +4,25 @@ from typing import Tuple, Optional
@dataclass
class ModelConfig:
"""模型相关配置"""
brep_feature_dim: int = 48
brep_feature_dim: int = 32
use_cf: bool = True
embed_dim: int = 768
latent_dim: int = 256
embed_dim: int = 384 # 3 的 倍数
latent_dim: int = 64
# 点云采样配置
num_surf_points: int = 16 # 每个面采样点数
num_edge_points: int = 4 # 每条边采样点数
# Transformer相关配置
num_transformer_layers: int = 6
num_attention_heads: int = 8
transformer_dim_feedforward: int = 512
transformer_dropout: float = 0.1
# 编码器配置
encoder_channels: Tuple[int] = (32, 64, 128)
encoder_layers_per_block: int = 1
@dataclass
class DataConfig:
"""数据相关配置"""
@ -40,7 +50,7 @@ class DataConfig:
class TrainConfig:
"""训练相关配置"""
# 基本训练参数
batch_size: int = 1
batch_size: int = 8
num_workers: int = 4
num_epochs: int = 100
learning_rate: float = 1e-4

153
brep2sdf/networks/encoder.py

@ -315,27 +315,29 @@ class SDFHead(nn.Module):
return self.mlp(x)
class BRepToSDF(nn.Module):
def __init__(
self,
brep_feature_dim: int = 48,
use_cf: bool = True,
embed_dim: int = 768,
latent_dim: int = 256
):
def __init__(self, config=None):
super().__init__()
# 获取配置
if config is None:
self.config = get_default_config()
self.embed_dim = embed_dim
else:
self.config = config
# 从配置中读取参数
self.embed_dim = self.config.model.embed_dim
self.brep_feature_dim = self.config.model.brep_feature_dim
self.latent_dim = self.config.model.latent_dim
self.use_cf = self.config.model.use_cf
# 1. 查询点编码器
self.query_encoder = nn.Sequential(
nn.Linear(3, embed_dim//4),
nn.LayerNorm(embed_dim//4),
nn.Linear(3, self.embed_dim//4),
nn.LayerNorm(self.embed_dim//4),
nn.ReLU(),
nn.Linear(embed_dim//4, embed_dim//2),
nn.LayerNorm(embed_dim//2),
nn.Linear(self.embed_dim//4, self.embed_dim//2),
nn.LayerNorm(self.embed_dim//2),
nn.ReLU(),
nn.Linear(embed_dim//2, embed_dim)
nn.Linear(self.embed_dim//2, self.embed_dim)
)
# 2. B-rep特征编码器
@ -343,12 +345,12 @@ class BRepToSDF(nn.Module):
# 3. 特征融合Transformer
self.transformer = SDFTransformer(
embed_dim=embed_dim,
num_layers=6
embed_dim=self.embed_dim,
num_layers=6 # 这个参数也可以移到配置文件中
)
# 4. SDF预测头
self.sdf_head = SDFHead(embed_dim=embed_dim*2)
self.sdf_head = SDFHead(embed_dim=self.embed_dim*2)
def forward(self, edge_ncs, edge_pos, edge_mask, surf_ncs, surf_pos, vertex_pos, query_points, data_class=None):
"""B-rep到SDF的前向传播
@ -435,88 +437,47 @@ def main():
# 获取配置
config = get_default_config()
# 从配置初始化模型
model = BRepToSDF(
brep_feature_dim=config.model.brep_feature_dim, # 48
use_cf=config.model.use_cf, # True
embed_dim=config.model.embed_dim, # 768
latent_dim=config.model.latent_dim # 256
)
# 初始化模型
model = BRepToSDF(config=config)
# 从配置获取参数
batch_size = config.train.batch_size
max_face = config.data.max_face
max_edge = config.data.max_edge
num_surf_points = config.model.num_surf_points
num_edge_points = config.model.num_edge_points
# 生成测试数据
test_data = {
'edge_ncs': torch.randn(batch_size, max_face, max_edge, num_edge_points, 3),
'edge_pos': torch.randn(batch_size, max_face, max_edge, 6),
'edge_mask': torch.ones(batch_size, max_face, max_edge, dtype=torch.bool),
'surf_ncs': torch.randn(batch_size, max_face, num_surf_points, 3),
'surf_pos': torch.randn(batch_size, max_face, 6),
'vertex_pos': torch.randn(batch_size, max_face, max_edge, 2, 3),
'query_points': torch.randn(batch_size, 1000, 3) # 1000个查询点
}
# 打印输入数据形状
logger.info("Input shapes:")
for name, tensor in test_data.items():
logger.info(f" {name}: {tensor.shape}")
# 前向传播
try:
sdf = model(**test_data)
logger.info(f"\nOutput SDF shape: {sdf.shape}")
# 从配置获取数据参数
batch_size = config.train.batch_size # 32
num_surfs = config.data.max_face # 64
num_edges = config.data.max_edge # 64
num_verts = 8 # 顶点数保持固定
num_queries = 1000 # 查询点数保持固定
# 更新测试数据维度
edge_ncs = torch.randn(
batch_size,
num_surfs, # max_face
num_edges, # max_edge
config.model.num_edge_points,
3
) # [B, max_face, max_edge, num_edge_points, 3]
edge_pos = torch.randn(
batch_size,
num_surfs,
num_edges,
6
) # [B, max_face, max_edge, 6]
edge_mask = torch.ones(
batch_size,
num_surfs,
num_edges,
dtype=torch.bool
) # [B, max_face, max_edge]
surf_ncs = torch.randn(
batch_size,
num_surfs,
config.model.num_surf_points,
3
) # [B, max_face, num_surf_points, 3]
surf_pos = torch.randn(
batch_size,
num_surfs,
6
) # [B, max_face, 6]
vertex_pos = torch.randn(
batch_size,
num_surfs,
num_edges,
2,
3
) # [B, max_face, max_edge, 2, 3]
query_points = torch.randn(batch_size, num_queries, 3)
# 更新前向传播调用
sdf = model(
edge_ncs=edge_ncs,
edge_pos=edge_pos,
edge_mask=edge_mask,
surf_ncs=surf_ncs,
surf_pos=surf_pos,
vertex_pos=vertex_pos,
query_points=query_points
)
# 计算模型参数量
total_params = sum(p.numel() for p in model.parameters())
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
logger.info(f"\nModel statistics:")
logger.info(f" Total parameters: {total_params:,}")
logger.info(f" Trainable parameters: {trainable_params:,}")
# 更新打印信息
print("\nInput shapes:")
print(f"edge_ncs: {edge_ncs.shape}")
print(f"edge_pos: {edge_pos.shape}")
print(f"edge_mask: {edge_mask.shape}")
print(f"surf_ncs: {surf_ncs.shape}")
print(f"surf_pos: {surf_pos.shape}")
print(f"vertex_pos: {vertex_pos.shape}")
print(f"query_points: {query_points.shape}")
print(f"\nOutput SDF shape: {sdf.shape}")
except Exception as e:
logger.error(f"Error during forward pass: {str(e)}")
raise
if __name__ == "__main__":
main()
Loading…
Cancel
Save