|
|
@ -251,13 +251,20 @@ class Trainer: |
|
|
|
gt_sdf = _gt_sdf[start_idx:end_idx] # SDF真值 |
|
|
|
normals = _normals[start_idx:end_idx] if args.use_normal else None # 法线 |
|
|
|
|
|
|
|
nonmnfld_pnts, psdf = self.sampler.get_norm_points(mnfld_pnts, normals, 0.1) |
|
|
|
|
|
|
|
|
|
|
|
# --- 准备模型输入,启用梯度 --- |
|
|
|
mnfld_pnts.requires_grad_(True) # 在检查之后启用梯度 |
|
|
|
nonmnfld_pnts.requires_grad_(True) # 在检查之后启用梯度 |
|
|
|
|
|
|
|
# --- 前向传播 --- |
|
|
|
mnfld_pred = self.model.forward_background( |
|
|
|
mnfld_pnts |
|
|
|
) |
|
|
|
nonmnfld_pred = self.model.forward_background( |
|
|
|
nonmnfld_pnts |
|
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -274,11 +281,14 @@ class Trainer: |
|
|
|
#if check_tensor(normals, "Normals (Loss Input)", epoch, step): raise ValueError("Bad normals before loss") |
|
|
|
#if check_tensor(points, "Points (Loss Input)", epoch, step): raise ValueError("Bad points before loss") |
|
|
|
logger.gpu_memory_stats("计算损失前") |
|
|
|
loss, loss_details = self.loss_manager.compute_loss_stage1( |
|
|
|
loss, loss_details = self.loss_manager.compute_loss( |
|
|
|
mnfld_pnts, |
|
|
|
nonmnfld_pnts, |
|
|
|
normals, # 传递检查过的 normals |
|
|
|
gt_sdf, |
|
|
|
mnfld_pred, |
|
|
|
nonmnfld_pred, |
|
|
|
psdf |
|
|
|
) |
|
|
|
else: |
|
|
|
loss = torch.nn.functional.mse_loss(pred_sdf, gt_sdf) |
|
|
|