diff --git a/code/conversion/run.py b/code/conversion/run.py index 7f36893..e58c72c 100644 --- a/code/conversion/run.py +++ b/code/conversion/run.py @@ -123,10 +123,16 @@ class ReconstructionRunner: self.network.train() # 设置网络为训练模式 self.adjust_learning_rate(epoch) # 调整学习率 nonmnfld_pnts = self.sampler.get_points(mnfld_pnts.unsqueeze(0), mnfld_sigma.unsqueeze(0)).squeeze() # 生成非流形点 + # nonmnfld_pnts: torch.Size([18432, 3]) + #logger.info(f"mnfld_pnts: {mnfld_pnts.shape}") mnfld_pnts: torch.Size([16384, 3]) + #logger.info(f"mnfld_sigma: {mnfld_sigma.shape}") mnfld_sigma: torch.Size([16384]) # forward pass mnfld_pred_all = self.network(mnfld_pnts) # 进行前向传播,计算流形点的预测值 nonmnfld_pred_all = self.network(nonmnfld_pnts) # 进行前向传播,计算非流形点的预测值 + #logger.info(f"mnfld_pred_all: {mnfld_pred_all.shape}") + #logger.info(f"nonmnfld_pred_all: {nonmnfld_pred_all.shape}") + mnfld_pred = mnfld_pred_all[:,0] # 提取流形预测结果 nonmnfld_pred = nonmnfld_pred_all[:,0] # 提取非流形预测结果 loss = 0.0 # 初始化损失为 0 @@ -166,6 +172,7 @@ class ReconstructionRunner: # last patch all_fi[(n_branch - 1) * n_patch_batch:, 0] = mnfld_pred_all[(n_branch - 1) * n_patch_batch:, n_branch] # 填充最后一个分支的流形预测值 + #logger.info(f"all_fi: {all_fi.shape}") # manifold loss for patches mnfld_loss_patch = torch.zeros(1).cuda() # 初始化补丁流形损失 if not args.ab == 'patch': # 检查是否为补丁损失