Browse Source

fix: neg sdf too small, -> shape error

main
mckay 3 months ago
parent
commit
b5928becf7
  1. 375
      brep2sdf/data/data.py

375
brep2sdf/data/data.py

@ -183,9 +183,16 @@ class BRepSDFDataset(Dataset):
max_points = self.config.data.num_query_points # 例如4096
# 确保正负样本均衡
num_pos = min(max_points // 2, sdf_pos.shape[0])
num_neg = min(max_points // 2, sdf_neg.shape[0])
if max_points // 2 > sdf_pos.shape[0]:
logger.warning(f"正样本过少,期望>{max_points // 2},实际:{sdf_pos.shape[0]}")
if max_points // 2 > sdf_neg.shape[0]:
num_neg = sdf_neg.shape[0]
else:
num_neg = max_points // 2
num_pos = max_points - num_neg
# 随机采样正样本
if sdf_pos.shape[0] > num_pos:
pos_indices = np.random.choice(sdf_pos.shape[0], num_pos, replace=False)
@ -222,139 +229,261 @@ def test_dataset():
try:
# 获取配置
config = get_default_config()
brep_dir = config.data.brep_dir
sdf_dir = config.data.sdf_dir
valid_data_dir = config.data.valid_data_dir
split = 'train'
max_face = config.data.max_face
max_edge = config.data.max_edge
num_edge_points = config.model.num_edge_points
num_surf_points = config.model.num_surf_points
num_query_points = config.data.num_query_points
# 定义预期的数据维度,使用配置中的参数
# 定义预期的数据维度
expected_shapes = {
'edge_ncs': (max_face, max_edge, num_edge_points, 3), # [max_face, max_edge, sample_points, xyz]
'edge_pos': (max_face, max_edge, 6),
'edge_mask': (max_face, max_edge),
'surf_ncs': (max_face, num_surf_points, 3),
'surf_pos': (max_face, 6),
'vertex_pos': (max_face, max_edge, 2, 3),
'points': (num_query_points, 3),
'sdf': (num_query_points, 1)
'edge_ncs': (config.data.max_face, config.data.max_edge, config.model.num_edge_points, 3),
'edge_pos': (config.data.max_face, config.data.max_edge, 6),
'edge_mask': (config.data.max_face, config.data.max_edge),
'surf_ncs': (config.data.max_face, config.model.num_surf_points, 3),
'surf_pos': (config.data.max_face, 6),
'vertex_pos': (config.data.max_face, config.data.max_edge, 2, 3),
'points': (config.data.num_query_points, 3),
'sdf': (config.data.num_query_points, 1)
}
logger.info("="*50)
logger.info("Testing dataset")
logger.info(f"B-rep directory: {brep_dir}")
logger.info(f"SDF directory: {sdf_dir}")
logger.info(f"Split: {split}")
logger.info("测试数据集")
logger.info(f"预期形状:")
for key, shape in expected_shapes.items():
logger.info(f" {key}: {shape}")
# 初始化数据集
dataset = BRepSDFDataset(
brep_dir=config.data.brep_dir,
sdf_dir=config.data.sdf_dir,
valid_data_dir=config.data.valid_data_dir,
split='train'
)
# 测试数据加载
logger.info("\n测试数据加载...")
sample = dataset[0]
# 检查数据类型和形状
logger.info("\n数据类型和形状检查:")
for key, value in sample.items():
if isinstance(value, torch.Tensor):
actual_shape = tuple(value.shape)
expected_shape = expected_shapes.get(key)
shape_match = "" if actual_shape == expected_shape else ""
logger.info(f"\n{key}:")
logger.info(f" 实际形状: {actual_shape}")
logger.info(f" 预期形状: {expected_shape}")
logger.info(f" 匹配状态: {shape_match}")
logger.info(f" 数据类型: {value.dtype}")
# 仅对浮点类型计算数值范围、均值和标准差
if value.dtype.is_floating_point:
logger.info(f" 数值范围: [{value.min():.3f}, {value.max():.3f}]")
logger.info(f" 均值: {value.mean():.3f}")
logger.info(f" 标准差: {value.std():.3f}")
if shape_match == "":
logger.warning(f" 形状不匹配: {key}")
if key in ['points', 'sdf']:
logger.warning(f" 查询点数量不一致,预期 {expected_shape[0]},实际 {actual_shape[0]}")
elif key in ['edge_ncs', 'edge_pos', 'edge_mask']:
logger.warning(f" 边数量不一致,预期 {expected_shape[1]},实际 {actual_shape[1]}")
elif key in ['surf_ncs', 'surf_pos']:
logger.warning(f" 面数量不一致,预期 {expected_shape[0]},实际 {actual_shape[0]}")
# 测试批处理
logger.info("\n测试批处理...")
batch_size = 4
dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=batch_size,
shuffle=True,
num_workers=0
)
batch = next(iter(dataloader))
logger.info("\n批处理形状检查:")
for key, value in batch.items():
if isinstance(value, torch.Tensor):
batch_shape = tuple(value.shape)
expected_batch_shape = (batch_size,) + expected_shapes[key]
shape_match = "" if batch_shape == expected_batch_shape else ""
logger.info(f"\n{key}:")
logger.info(f" 实际形状: {batch_shape}")
logger.info(f" 预期形状: {expected_batch_shape}")
logger.info(f" 匹配状态: {shape_match}")
logger.info(f" 数据类型: {value.dtype}")
# 仅对浮点类型计算数值范围、均值和标准差
if value.dtype.is_floating_point:
logger.info(f" 数值范围: [{value.min():.3f}, {value.max():.3f}]")
logger.info(f" 均值: {value.mean():.3f}")
logger.info(f" 标准差: {value.std():.3f}")
if shape_match == "":
logger.warning(f" 批处理形状不匹配: {key}")
logger.info("\n测试完成!")
logger.info("="*50)
# 2. 初始化数据集
except Exception as e:
logger.error(f"测试过程中出错: {str(e)}")
raise
from collections import defaultdict
from tqdm import tqdm
def validate_dataset(split: str = 'train', num_samples: int = None):
"""全面验证数据集
Args:
split: 数据集分割 ('train', 'val', 'test')
num_samples: 要检查的样本数量None表示检查所有样本
"""
try:
config = get_default_config()
logger.info(f"开始验证{split}数据集...")
# 初始化数据集
dataset = BRepSDFDataset(
brep_dir=brep_dir,
sdf_dir=sdf_dir,
valid_data_dir=valid_data_dir,
split=split
brep_dir=config.data.brep_dir,
sdf_dir=config.data.sdf_dir,
valid_data_dir=config.data.valid_data_dir,
split='train'
)
logger.info(f"\nDataset size: {len(dataset)}")
# 3. 测试单个样本加载和形状检查
logger.info("\nTesting single sample loading...")
try:
sample = dataset[0]
logger.info("Sample keys and shapes:")
for key, value in sample.items():
if isinstance(value, torch.Tensor):
actual_shape = tuple(value.shape)
expected_shape = expected_shapes.get(key)
shape_match = actual_shape == expected_shape if expected_shape else None
logger.info(f" {key}:")
logger.info(f" Shape: {actual_shape}")
logger.info(f" Expected: {expected_shape}")
logger.info(f" Match: {shape_match}")
logger.info(f" dtype: {value.dtype}")
logger.info(f" grad: {value.requires_grad}")
if not shape_match:
logger.warning(f" Shape mismatch for {key}!")
else:
logger.info(f" {key}: {type(value)}")
except Exception as e:
logger.error("Error loading single sample")
logger.error(f"Error message: {str(e)}")
raise
# 4. 测试数据加载器和批处理形状
logger.info("\nTesting DataLoader...")
try:
dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=2,
shuffle=True,
num_workers=0
)
batch = next(iter(dataloader))
logger.info("Batch keys and shapes:")
for key, value in batch.items():
if isinstance(value, torch.Tensor):
actual_shape = tuple(value.shape)
expected_shape = expected_shapes.get(key)
if expected_shape:
expected_batch_shape = (2,) + expected_shape
shape_match = actual_shape == expected_batch_shape
else:
expected_batch_shape = None
shape_match = None
logger.info(f" {key}:")
logger.info(f" Shape: {actual_shape}")
logger.info(f" Expected: {expected_batch_shape}")
logger.info(f" Match: {shape_match}")
logger.info(f" dtype: {value.dtype}")
if not shape_match:
logger.warning(f" Shape mismatch for {key}!")
elif isinstance(value, list):
logger.info(f" {key}: list of length {len(value)}")
else:
logger.info(f" {key}: {type(value)}")
except Exception as e:
logger.error("Error in DataLoader")
logger.error(f"Error message: {str(e)}")
raise
# 5. 验证数据范围
logger.info("\nValidating data ranges...")
try:
for key, value in batch.items():
if isinstance(value, torch.Tensor) and value.dtype in [torch.float32, torch.float64]:
logger.info(f" {key}:")
logger.info(f" min: {value.min().item():.4f}")
logger.info(f" max: {value.max().item():.4f}")
logger.info(f" mean: {value.mean().item():.4f}")
logger.info(f" std: {value.std().item():.4f}")
# 检查是否有NaN或Inf
has_nan = torch.isnan(value).any()
has_inf = torch.isinf(value).any()
if has_nan or has_inf:
logger.warning(f" Found NaN: {has_nan}, Inf: {has_inf}")
total_samples = len(dataset) if num_samples is None else min(num_samples, len(dataset))
logger.info(f"总样本数: {total_samples}")
# 初始化统计信息
stats = {
'face_counts': [],
'edge_counts': [],
'vertex_counts': [],
'sdf_point_counts': [],
'invalid_samples': [],
'shape_mismatches': defaultdict(int),
'value_ranges': defaultdict(lambda: {'min': float('inf'), 'max': float('-inf')}),
'nan_counts': defaultdict(int),
'inf_counts': defaultdict(int)
}
# 遍历数据集
for idx in tqdm(range(total_samples), desc="验证数据"):
try:
sample = dataset[idx]
# 1. 检查数据完整性
required_keys = ['surf_ncs', 'surf_pos', 'edge_ncs', 'edge_pos',
'vertex_pos', 'points', 'sdf', 'edge_mask']
missing_keys = [key for key in required_keys if key not in sample]
if missing_keys:
stats['invalid_samples'].append((idx, f"缺少键: {missing_keys}"))
continue
# 2. 检查形状
expected_shapes = {
'surf_ncs': (config.data.max_face, config.model.num_surf_points, 3),
'surf_pos': (config.data.max_face, 6),
'edge_ncs': (config.data.max_face, config.data.max_edge, config.model.num_edge_points, 3),
'edge_pos': (config.data.max_face, config.data.max_edge, 6),
'edge_mask': (config.data.max_face, config.data.max_edge),
'vertex_pos': (config.data.max_face, config.data.max_edge, 2, 3),
'points': (config.data.num_query_points, 3),
'sdf': (config.data.num_query_points, 1)
}
for key, expected_shape in expected_shapes.items():
if key in sample:
actual_shape = tuple(sample[key].shape)
if actual_shape != expected_shape:
stats['shape_mismatches'][key] += 1
stats['invalid_samples'].append(
(idx, f"{key} 形状不匹配: 预期 {expected_shape}, 实际 {actual_shape}")
)
# 3. 检查数值范围和无效值
for key, tensor in sample.items():
if isinstance(tensor, torch.Tensor) and tensor.dtype.is_floating_point:
# 更新值范围
stats['value_ranges'][key]['min'] = min(stats['value_ranges'][key]['min'],
tensor.min().item())
stats['value_ranges'][key]['max'] = max(stats['value_ranges'][key]['max'],
tensor.max().item())
except Exception as e:
logger.error("Error validating data ranges")
logger.error(f"Error message: {str(e)}")
raise
logger.info("\nAll tests completed successfully!")
logger.info("="*50)
# 检查NaN和Inf
nan_count = torch.isnan(tensor).sum().item()
inf_count = torch.isinf(tensor).sum().item()
if nan_count > 0:
stats['nan_counts'][key] += nan_count
if inf_count > 0:
stats['inf_counts'][key] += inf_count
# 4. 收集统计信息
stats['face_counts'].append(sample['surf_ncs'].shape[0])
stats['edge_counts'].append(sample['edge_ncs'].shape[1])
stats['vertex_counts'].append(len(torch.unique(sample['vertex_pos'].reshape(-1, 3), dim=0)))
stats['sdf_point_counts'].append(sample['points'].shape[0])
except Exception as e:
stats['invalid_samples'].append((idx, str(e)))
# 输出统计结果
logger.info("\n=== 数据集验证结果 ===")
# 1. 基本统计信息
logger.info("\n基本统计信息:")
logger.info(f"总样本数: {total_samples}")
logger.info(f"有效样本数: {total_samples - len(stats['invalid_samples'])}")
logger.info(f"无效样本数: {len(stats['invalid_samples'])}")
# 2. 形状不匹配统计
if stats['shape_mismatches']:
logger.info("\n形状不匹配统计:")
for key, count in stats['shape_mismatches'].items():
logger.info(f" {key}: {count}个样本不匹配")
# 3. 数值范围统计
logger.info("\n数值范围统计:")
for key, ranges in stats['value_ranges'].items():
logger.info(f" {key}:")
logger.info(f" 最小值: {ranges['min']:.3f}")
logger.info(f" 最大值: {ranges['max']:.3f}")
# 4. 无效值统计
if sum(stats['nan_counts'].values()) > 0 or sum(stats['inf_counts'].values()) > 0:
logger.info("\n无效值统计:")
for key in stats['nan_counts'].keys():
if stats['nan_counts'][key] > 0:
logger.info(f" {key} 包含 {stats['nan_counts'][key]} 个 NaN 值")
for key in stats['inf_counts'].keys():
if stats['inf_counts'][key] > 0:
logger.info(f" {key} 包含 {stats['inf_counts'][key]} 个 Inf 值")
# 5. 几何特征统计
logger.info("\n几何特征统计:")
for name, values in [
('面数', stats['face_counts']),
('边数', stats['edge_counts']),
('顶点数', stats['vertex_counts']),
('SDF采样点数', stats['sdf_point_counts'])
]:
values = np.array(values)
logger.info(f" {name}:")
logger.info(f" 最小值: {np.min(values)}")
logger.info(f" 最大值: {np.max(values)}")
logger.info(f" 平均值: {np.mean(values):.2f}")
logger.info(f" 中位数: {np.median(values):.2f}")
logger.info(f" 标准差: {np.std(values):.2f}")
# 6. 输出无效样本详情
if stats['invalid_samples']:
logger.info("\n无效样本详情:")
for idx, error in stats['invalid_samples']:
logger.info(f" 样本 {idx}: {error}")
return stats
except Exception as e:
logger.error(f"Error in test_dataset: {str(e)}")
logger.error(f"验证过程出错: {str(e)}")
raise
if __name__ == '__main__':
test_dataset()
validate_dataset(split='train', num_samples=None) # 先测试100个样本
Loading…
Cancel
Save