| 
						
						
							
								
							
						
						
					 | 
					@ -4,23 +4,23 @@ train{ | 
				
			
			
		
	
		
		
			
				
					 | 
					 | 
					    fileprefix_list = [ | 
					 | 
					 | 
					    fileprefix_list = [ | 
				
			
			
		
	
		
		
			
				
					 | 
					 | 
					broken_bullet_50k, # more input models can be added here | 
					 | 
					 | 
					broken_bullet_50k, # more input models can be added here | 
				
			
			
		
	
		
		
			
				
					 | 
					 | 
					] | 
					 | 
					 | 
					] | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					    d_in = 3 | 
					 | 
					 | 
					    d_in = 3 # 输入数据的维度。在3D点云数据中,通常为3(x、y、z坐标) | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					    plot_frequency = 5000 | 
					 | 
					 | 
					    plot_frequency = 5000 # 每5000次迭代绘制一次点云 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
	
		
		
			
				
					 | 
					 | 
					    checkpoint_frequency = 5000 | 
					 | 
					 | 
					    checkpoint_frequency = 5000 | 
				
			
			
		
	
		
		
			
				
					 | 
					 | 
					    status_frequency = 100 | 
					 | 
					 | 
					    status_frequency = 100 | 
				
			
			
		
	
		
		
			
				
					 | 
					 | 
					    weight_decay = 0 | 
					 | 
					 | 
					    weight_decay = 0 | 
				
			
			
		
	
		
		
			
				
					 | 
					 | 
					    learning_rate_schedule = [{ | 
					 | 
					 | 
					    learning_rate_schedule = [{ | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					                                "Type" : "Step", | 
					 | 
					 | 
					                                "Type" : "Step", # 学习率调度类型。"Step"表示在指定迭代次数后将学习率乘以因子 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					 | 
					 | 
					                                "Initial" : 0.005, | 
					 | 
					 | 
					                                "Initial" : 0.005, | 
				
			
			
		
	
		
		
			
				
					 | 
					 | 
					                                "Interval" : 2000, | 
					 | 
					 | 
					                                "Interval" : 2000, | 
				
			
			
		
	
		
		
			
				
					 | 
					 | 
					                                "Factor" : 0.5 | 
					 | 
					 | 
					                                "Factor" : 0.5 | 
				
			
			
		
	
		
		
			
				
					 | 
					 | 
					                                }] | 
					 | 
					 | 
					                                }] | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					    network_class = model.network.NHRepNet | 
					 | 
					 | 
					    network_class = model.network.NHRepNet # 网络类型。NHRepNet是neural halfspace representation network的缩写 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					 | 
					 | 
					} | 
					 | 
					 | 
					} | 
				
			
			
		
	
		
		
			
				
					 | 
					 | 
					
 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					 | 
					 | 
					plot{ | 
					 | 
					 | 
					plot{ | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					    resolution = 128 | 
					 | 
					 | 
					    resolution = 128 # 体素网格的分辨率。128表示体素网格的每个维度有128个单元格 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					    mc_value = 0.0 | 
					 | 
					 | 
					    mc_value = 0.0 # 体素网格的体素值。0.0表示体素网格的体素值为0 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
	
		
		
			
				
					 | 
					 | 
					    is_uniform_grid = True | 
					 | 
					 | 
					    is_uniform_grid = True | 
				
			
			
		
	
		
		
			
				
					 | 
					 | 
					    verbose = False | 
					 | 
					 | 
					    verbose = False | 
				
			
			
		
	
		
		
			
				
					 | 
					 | 
					    save_html = False | 
					 | 
					 | 
					    save_html = False | 
				
			
			
		
	
	
		
		
			
				
					| 
						
						
						
							
								
							
						
					 | 
					@ -29,20 +29,20 @@ plot{ | 
				
			
			
		
	
		
		
			
				
					 | 
					 | 
					} | 
					 | 
					 | 
					} | 
				
			
			
		
	
		
		
			
				
					 | 
					 | 
					network{ | 
					 | 
					 | 
					network{ | 
				
			
			
		
	
		
		
			
				
					 | 
					 | 
					    inputs{ | 
					 | 
					 | 
					    inputs{ | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					        dims_sdf = [256, 256, 256] | 
					 | 
					 | 
					        dims_sdf = [256, 256, 256] # 体素网格的维度。[256, 256, 256]表示体素网格的每个维度有256个单元格 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					        skip_in = [] | 
					 | 
					 | 
					        skip_in = [] # 跳过输入的索引。[]表示不跳过任何输入 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					        geometric_init= True | 
					 | 
					 | 
					        geometric_init= True # 几何初始化。True表示使用几何初始化 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					        radius_init = 1 | 
					 | 
					 | 
					        radius_init = 1 # 半径初始化。1表示半径初始化为1 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					        beta=100 | 
					 | 
					 | 
					        beta=100 # beta值。100表示beta值为100 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
	
		
		
	
		
		
	
		
		
	
		
		
			
				
					 | 
					 | 
					    } | 
					 | 
					 | 
					    } | 
				
			
			
		
	
		
		
			
				
					 | 
					 | 
					    sampler{ | 
					 | 
					 | 
					    sampler{ | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					        sampler_type = NormalPerPoint | 
					 | 
					 | 
					        sampler_type = NormalPerPoint # 采样器类型。NormalPerPoint表示每个点都使用正态分布采样 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					 | 
					 | 
					        properties{ | 
					 | 
					 | 
					        properties{ | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					            global_sigma = 1.8 | 
					 | 
					 | 
					            global_sigma = 1.8 # 全局sigma值。1.8表示全局sigma值为1.8 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					 | 
					 | 
					            } | 
					 | 
					 | 
					            } | 
				
			
			
		
	
		
		
			
				
					 | 
					 | 
					        } | 
					 | 
					 | 
					        } | 
				
			
			
		
	
		
		
			
				
					 | 
					 | 
					    loss{ | 
					 | 
					 | 
					    loss{ | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					        lambda = 1 | 
					 | 
					 | 
					        lambda = 1 # 损失函数中的lambda值。1表示lambda值为1 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					        normals_lambda = 1 | 
					 | 
					 | 
					        normals_lambda = 1 # 损失函数中的normals_lambda值。1表示normals_lambda值为1 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
	
		
		
			
				
					 | 
					 | 
					    } | 
					 | 
					 | 
					    } | 
				
			
			
		
	
		
		
			
				
					 | 
					 | 
					} | 
					 | 
					 | 
					} | 
				
			
			
		
	
	
		
		
			
				
					| 
						
						
						
					 | 
					
  |