Browse Source

refactor: 模型相关函数拆分

main
mckay 4 months ago
parent
commit
5b98c59270
  1. 403
      brep2sdf/networks/decoder.py
  2. 295
      brep2sdf/networks/network.py
  3. 2
      brep2sdf/train.py

403
brep2sdf/networks/decoder.py

@ -1,383 +1,42 @@
import math
import torch
import torch.nn as nn
from dataclasses import dataclass
from typing import Dict, Optional, Tuple, Union
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.utils import BaseOutput, is_torch_version
from diffusers.utils.accelerate_utils import apply_forward_hook
from diffusers.models.attention_processor import AttentionProcessor, AttnProcessor
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.autoencoders.vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder
from diffusers.models.unets.unet_1d_blocks import ResConvBlock, SelfAttention1d, get_down_block, get_up_block, Upsample1d
from diffusers.models.attention_processor import SpatialNorm
import torch.nn.functional as F
from typing import Dict, Optional, Tuple, Union
from brep2sdf.config.default_config import get_default_config
from brep2sdf.utils.logger import logger
class Decoder1D(nn.Module):
def __init__(
self,
in_channels=3,
out_channels=3,
up_block_types=("UpDecoderBlock2D",),
block_out_channels=(64,),
layers_per_block=2,
norm_num_groups=32,
act_fn="silu",
norm_type="group", # group, spatial
):
'''
这是第一阶段的解码器用于处理B-rep特征
包含三个主要部分
conv_in: 输入卷积层处理初始特征
mid_block: 中间处理块
up_blocks: 上采样块序列
支持梯度检查点功能gradient checkpointing以节省内存
输出维度: [B, C, L]
# NOTE:
1. 移除了分片(slicing)和平铺(tiling)功能
2. 直接使用mode()而不是sample()获取潜在向量
3. 简化了编码过程只保留核心功能
4. 返回确定性的潜在向量而不是分布
'''
class SDFHead(nn.Module):
"""SDF预测头"""
def __init__(self, embed_dim: int = 768*2):
super().__init__()
self.layers_per_block = layers_per_block
self.conv_in = nn.Conv1d(
in_channels,
block_out_channels[-1],
kernel_size=3,
stride=1,
padding=1,
)
self.mid_block = None
self.up_blocks = nn.ModuleList([])
temb_channels = in_channels if norm_type == "spatial" else None
# mid
self.mid_block = UNetMidBlock1D(
in_channels=block_out_channels[-1],
mid_channels=block_out_channels[-1],
self.mlp = nn.Sequential(
nn.Linear(embed_dim, embed_dim//2),
nn.LayerNorm(embed_dim//2),
nn.ReLU(),
nn.Linear(embed_dim//2, embed_dim//4),
nn.LayerNorm(embed_dim//4),
nn.ReLU(),
nn.Linear(embed_dim//4, 1),
nn.Tanh()
)
# up
reversed_block_out_channels = list(reversed(block_out_channels))
output_channel = reversed_block_out_channels[0]
for i, up_block_type in enumerate(up_block_types):
prev_output_channel = output_channel
output_channel = reversed_block_out_channels[i]
is_final_block = i == len(block_out_channels) - 1
up_block = UpBlock1D(
in_channels=prev_output_channel,
out_channels=output_channel,
)
self.up_blocks.append(up_block)
prev_output_channel = output_channel
# out
if norm_type == "spatial":
self.conv_norm_out = SpatialNorm(block_out_channels[0], temb_channels)
else:
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6)
self.conv_act = nn.SiLU()
self.conv_out = nn.Conv1d(block_out_channels[0], out_channels, 3, padding=1)
self.gradient_checkpointing = False
def forward(self, z, latent_embeds=None):
sample = z
sample = self.conv_in(sample)
if self.training and self.gradient_checkpointing:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
if is_torch_version(">=", "1.11.0"):
# middle
sample = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block), sample, latent_embeds, use_reentrant=False
)
# sample = sample.to(upscale_dtype)
# up
for up_block in self.up_blocks:
sample = torch.utils.checkpoint.checkpoint(
create_custom_forward(up_block), sample, latent_embeds, use_reentrant=False
)
else:
# middle
sample = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block), sample, latent_embeds
)
# sample = sample.to(upscale_dtype)
# up
for up_block in self.up_blocks:
sample = torch.utils.checkpoint.checkpoint(create_custom_forward(up_block), sample, latent_embeds)
else:
# middle
sample = self.mid_block(sample, latent_embeds)
# sample = sample.to(upscale_dtype)
# up
for up_block in self.up_blocks:
sample = up_block(sample, latent_embeds)
def forward(self, x):
return self.mlp(x)
# post-process
if latent_embeds is None:
sample = self.conv_norm_out(sample)
else:
sample = self.conv_norm_out(sample, latent_embeds)
sample = self.conv_act(sample)
sample = self.conv_out(sample)
return sample
class SDFDecoder(nn.Module):
def __init__(
self,
latent_size,
dims,
dropout=None,
dropout_prob=0.0,
norm_layers=(),
latent_in=(),
weight_norm=False,
xyz_in_all=None,
use_tanh=False,
latent_dropout=False,
):
'''
这是第二阶段的解码器用于生成SDF值
使用多层MLP结构
特点
支持在不同层注入latent信息通过latent_in参数
可以在每层添加xyz坐标通过xyz_in_all参数
支持权重归一化和dropout
输入维度: [N, latent_size+3]
输出维度: [N, 1]
'''
super(SDFDecoder, self).__init__()
def make_sequence():
return []
dims = [latent_size + 3] + dims + [1]
self.num_layers = len(dims)
self.norm_layers = norm_layers
self.latent_in = latent_in
self.latent_dropout = latent_dropout
if self.latent_dropout:
self.lat_dp = nn.Dropout(0.2)
self.xyz_in_all = xyz_in_all
self.weight_norm = weight_norm
for layer in range(0, self.num_layers - 1):
if layer + 1 in latent_in:
out_dim = dims[layer + 1] - dims[0]
else:
out_dim = dims[layer + 1]
if self.xyz_in_all and layer != self.num_layers - 2:
out_dim -= 3
if weight_norm and layer in self.norm_layers:
setattr(
self,
"lin" + str(layer),
nn.utils.weight_norm(nn.Linear(dims[layer], out_dim)),
)
else:
setattr(self, "lin" + str(layer), nn.Linear(dims[layer], out_dim))
if (
(not weight_norm)
and self.norm_layers is not None
and layer in self.norm_layers
):
setattr(self, "bn" + str(layer), nn.LayerNorm(out_dim))
self.use_tanh = use_tanh
if use_tanh:
self.tanh = nn.Tanh()
self.relu = nn.ReLU()
self.dropout_prob = dropout_prob
self.dropout = dropout
self.th = nn.Tanh()
# input: N x (L+3)
def forward(self, input):
xyz = input[:, -3:]
if input.shape[1] > 3 and self.latent_dropout:
latent_vecs = input[:, :-3]
latent_vecs = F.dropout(latent_vecs, p=0.2, training=self.training)
x = torch.cat([latent_vecs, xyz], 1)
else:
x = input
for layer in range(0, self.num_layers - 1):
lin = getattr(self, "lin" + str(layer))
if layer in self.latent_in:
x = torch.cat([x, input], 1)
elif layer != 0 and self.xyz_in_all:
x = torch.cat([x, xyz], 1)
x = lin(x)
# last layer Tanh
if layer == self.num_layers - 2 and self.use_tanh:
x = self.tanh(x)
if layer < self.num_layers - 2:
if (
self.norm_layers is not None
and layer in self.norm_layers
and not self.weight_norm
):
bn = getattr(self, "bn" + str(layer))
x = bn(x)
x = self.relu(x)
if self.dropout is not None and layer in self.dropout:
x = F.dropout(x, p=self.dropout_prob, training=self.training)
if hasattr(self, "th"):
x = self.th(x)
return x
class BRep2SdfDecoder(nn.Module):
def __init__(
self,
latent_size=256,
feature_dims=[512, 512, 256, 128], # 特征解码器维度
sdf_dims=[512, 512, 512, 512], # SDF解码器维度
up_block_types=("UpDecoderBlock2D",),
layers_per_block=2,
norm_num_groups=32,
norm_type="group",
dropout=None,
dropout_prob=0.0,
norm_layers=(),
latent_in=(),
weight_norm=False,
xyz_in_all=True,
use_tanh=True,
):
class SDFTransformer(nn.Module):
"""SDF Transformer编码器"""
def __init__(self, embed_dim: int = 768, num_layers: int = 6):
super().__init__()
# 1. 特征解码器 (使用Decoder1D结构)
self.feature_decoder = Decoder1D(
in_channels=latent_size,
out_channels=feature_dims[-1],
up_block_types=up_block_types,
block_out_channels=feature_dims,
layers_per_block=layers_per_block,
norm_num_groups=norm_num_groups,
norm_type=norm_type
)
# 2. SDF解码器 (使用原始Decoder结构)
self.sdf_decoder = SDFDecoder(
latent_size=feature_dims[-1], # 使用特征解码器的输出维度
dims=sdf_dims,
dropout=dropout,
dropout_prob=dropout_prob,
norm_layers=norm_layers,
latent_in=latent_in,
weight_norm=weight_norm,
xyz_in_all=xyz_in_all,
use_tanh=use_tanh,
latent_dropout=False
layer = nn.TransformerEncoderLayer(
d_model=embed_dim,
nhead=8,
dim_feedforward=1024,
dropout=0.1,
batch_first=True,
norm_first=False # 修改这里:设置为False
)
# 3. 特征转换层 (将特征解码器的输出转换为SDF解码器需要的格式)
self.feature_transform = nn.Sequential(
nn.Linear(feature_dims[-1], feature_dims[-1]),
nn.LayerNorm(feature_dims[-1]),
nn.SiLU()
)
def forward(self, latent, query_points, latent_embeds=None):
"""
Args:
latent: [B, C, L] B-rep特征
query_points: [B, N, 3] 查询点
latent_embeds: 可选的条件嵌入
Returns:
sdf: [B, N, 1] SDF值
"""
# 1. 特征解码
features = self.feature_decoder(latent, latent_embeds) # [B, C, L]
# 2. 特征转换
B, C, L = features.shape
features = features.permute(0, 2, 1) # [B, L, C]
features = self.feature_transform(features) # [B, L, C]
# 3. 准备SDF解码器输入
_, N, _ = query_points.shape
features = features.unsqueeze(1).expand(-1, N, -1, -1) # [B, N, L, C]
query_points = query_points.unsqueeze(2).expand(-1, -1, L, -1) # [B, N, L, 3]
# 4. 合并特征和坐标
sdf_input = torch.cat([
features.reshape(B*N*L, -1), # [B*N*L, C]
query_points.reshape(B*N*L, -1) # [B*N*L, 3]
], dim=-1)
# 5. SDF生成
sdf = self.sdf_decoder(sdf_input) # [B*N*L, 1]
sdf = sdf.reshape(B, N, L, 1) # [B, N, L, 1]
# 6. 聚合多尺度SDF
sdf = sdf.mean(dim=2) # [B, N, 1]
return sdf
self.transformer = nn.TransformerEncoder(layer, num_layers)
# 使用示例
if __name__ == "__main__":
# 创建模型
decoder = BRepDecoder(
latent_size=256,
feature_dims=[512, 256, 128, 64],
sdf_dims=[512, 512, 512, 512],
up_block_types=("UpDecoderBlock2D",),
layers_per_block=2,
norm_num_groups=32,
dropout=None,
dropout_prob=0.0,
norm_layers=[0, 1, 2, 3],
latent_in=[4],
weight_norm=True,
xyz_in_all=True,
use_tanh=True
)
# 测试数据
batch_size = 4
seq_len = 32
num_points = 1000
latent = torch.randn(batch_size, 256, seq_len)
query_points = torch.randn(batch_size, num_points, 3)
latent_embeds = torch.randn(batch_size, 256)
# 前向传播
sdf = decoder(latent, query_points, latent_embeds)
print(f"Input latent shape: {latent.shape}")
print(f"Query points shape: {query_points.shape}")
print(f"Output SDF shape: {sdf.shape}")
def forward(self, x, mask=None):
return self.transformer(x, src_key_padding_mask=mask)

295
brep2sdf/networks/network.py

@ -1,127 +1,202 @@
import torch
import torch.nn as nn
from encoder import BRepEncoder
from decoder import BRep2SdfDecoder
import torch.nn.functional as F
from typing import Dict, Optional, Tuple, Union
from brep2sdf.config.default_config import get_default_config
from brep2sdf.utils.logger import logger
class BRep2SDF(nn.Module):
def __init__(
self,
# 编码器参数
in_channels=3,
latent_size=256,
encoder_block_out_channels=(512, 256, 128, 64),
# 解码器参数
decoder_feature_dims=(512, 256, 128, 64),
sdf_dims=(512, 512, 512, 512),
# 共享参数
layers_per_block=2,
norm_num_groups=32,
# SDF特定参数
dropout=None,
dropout_prob=0.0,
norm_layers=(0, 1, 2, 3),
latent_in=(4,),
weight_norm=True,
xyz_in_all=True,
use_tanh=True,
):
from brep2sdf.networks.encoder import BRepFeatureEmbedder
from brep2sdf.networks.decoder import SDFHead, SDFTransformer
class BRepToSDF(nn.Module):
def __init__(self, config=None):
super().__init__()
# 获取配置
if config is None:
self.config = get_default_config()
else:
self.config = config
# 从配置中读取参数
self.embed_dim = self.config.model.embed_dim
self.brep_feature_dim = self.config.model.brep_feature_dim
self.latent_dim = self.config.model.latent_dim
self.use_cf = self.config.model.use_cf
# 1. 编码器配置
encoder_config = type('Config', (), {
'in_channels': in_channels,
'out_channels': latent_size,
'block_out_channels': encoder_block_out_channels,
'layers_per_block': layers_per_block,
'norm_num_groups': norm_num_groups,
'encoder_params': {
'in_channels': in_channels,
'out_channels': latent_size,
'block_out_channels': encoder_block_out_channels,
'layers_per_block': layers_per_block,
'norm_num_groups': norm_num_groups,
}
})()
# 1. 查询点编码器
self.query_encoder = nn.Sequential(
nn.Linear(3, self.embed_dim//4),
nn.LayerNorm(self.embed_dim//4),
nn.ReLU(),
nn.Linear(self.embed_dim//4, self.embed_dim//2),
nn.LayerNorm(self.embed_dim//2),
nn.ReLU(),
nn.Linear(self.embed_dim//2, self.embed_dim)
)
# 2. 解码器配置
decoder_config = {
'latent_size': latent_size,
'feature_dims': decoder_feature_dims,
'sdf_dims': sdf_dims,
'layers_per_block': layers_per_block,
'norm_num_groups': norm_num_groups,
'dropout': dropout,
'dropout_prob': dropout_prob,
'norm_layers': norm_layers,
'latent_in': latent_in,
'weight_norm': weight_norm,
'xyz_in_all': xyz_in_all,
'use_tanh': use_tanh,
}
# 2. B-rep特征编码器
self.brep_embedder = BRepFeatureEmbedder()
# 3. 创建编码器和解码器
self.encoder = BRepEncoder(encoder_config)
self.decoder = BRep2SdfDecoder(**decoder_config)
# 3. 特征融合Transformer
self.transformer = SDFTransformer(
embed_dim=self.embed_dim,
num_layers=6 # 这个参数也可以移到配置文件中
)
def encode(self, brep_model):
"""编码B-rep模型为潜在特征"""
return self.encoder.encode(brep_model)
# 4. SDF预测头
self.sdf_head = SDFHead(embed_dim=self.embed_dim*2)
def forward(self, edge_ncs, edge_pos, edge_mask, surf_ncs, surf_pos, vertex_pos, query_points, data_class=None):
"""B-rep到SDF的前向传播
def decode(self, latent, query_points, latent_embeds=None):
"""从潜在特征解码SDF值"""
return self.decoder(latent, query_points, latent_embeds)
def forward(self, brep_model, query_points):
"""完整的前向传播过程"""
# 1. 编码B-rep模型
latent = self.encode(brep_model)
if latent is None:
return None
Args:
edge_ncs: 边归一化特征 [B, max_face, max_edge, num_edge_points, 3]
edge_pos: 边位置 [B, max_face, max_edge, 6]
edge_mask: 边掩码 [B, max_face, max_edge]
surf_ncs: 面归一化特征 [B, max_face, num_surf_points, 3]
surf_pos: 面位置 [B, max_face, 6]
vertex_pos: 顶点位置 [B, max_face, max_edge, 2, 3]
query_points: 查询点 [B, num_queries, 3]
data_class: (可选) 类别标签
Returns:
sdf: 预测的SDF值 [B, num_queries, 1]
"""
B, Q = query_points.shape[:2] # B: batch_size, Q: num_queries
try:
# 确保query_points需要梯度
if not query_points.requires_grad:
query_points = query_points.detach().requires_grad_(True)
# 1. B-rep特征编码
brep_features = self.brep_embedder(
edge_ncs=edge_ncs, # [B, max_face, max_edge, num_edge_points, 3]
edge_pos=edge_pos, # [B, max_face, max_edge, 6]
edge_mask=edge_mask, # [B, max_face, max_edge]
surf_ncs=surf_ncs, # [B, max_face, num_surf_points, 3]
surf_pos=surf_pos, # [B, max_face, 6]
vertex_pos=vertex_pos, # [B, max_face, max_edge, 2, 3]
data_class=data_class
) # [B, max_face*(max_edge+1), embed_dim]
# 2. 解码SDF值
sdf = self.decode(latent, query_points)
return sdf
# 2. 查询点编码
query_features = self.query_encoder(query_points) # [B, Q, embed_dim]
# 3. 提取全局特征
global_features = brep_features.mean(dim=1) # [B, embed_dim]
# 4. 为每个查询点准备特征
expanded_features = global_features.unsqueeze(1).expand(-1, Q, -1) # [B, Q, embed_dim]
# 5. 连接查询点特征和全局特征
combined_features = torch.cat([
expanded_features, # [B, Q, embed_dim]
query_features # [B, Q, embed_dim]
], dim=-1) # [B, Q, embed_dim*2]
# 6. SDF预测
sdf = self.sdf_head(combined_features) # [B, Q, 1]
# 使用示例
if __name__ == "__main__":
# 创建模型
model = BRep2SDF(
in_channels=3,
latent_size=256,
encoder_block_out_channels=(512, 256, 128, 64),
decoder_feature_dims=(512, 256, 128, 64),
sdf_dims=(512, 512, 512, 512),
layers_per_block=2,
norm_num_groups=32,
)
if not sdf.requires_grad:
logger.warning("SDF output does not require grad!")
return sdf
except Exception as e:
logger.error(f"Error in BRepToSDF forward pass:")
logger.error(f" Error message: {str(e)}")
logger.error(f" Input shapes:")
logger.error(f" edge_ncs: {edge_ncs.shape}")
logger.error(f" edge_pos: {edge_pos.shape}")
logger.error(f" edge_mask: {edge_mask.shape}")
logger.error(f" surf_ncs: {surf_ncs.shape}")
logger.error(f" surf_pos: {surf_pos.shape}")
logger.error(f" vertex_pos: {vertex_pos.shape}")
logger.error(f" query_points: {query_points.shape}")
raise
def sdf_loss(pred_sdf, gt_sdf, points, grad_weight: float = 0.1):
"""SDF损失函数"""
# 确保points需要梯度
if not points.requires_grad:
points = points.detach().requires_grad_(True)
# 测试数据
batch_size = 4
seq_len = 32
num_points = 1000
# L1损失
l1_loss = F.l1_loss(pred_sdf, gt_sdf)
# 模拟B-rep模型数据
class MockBRep:
def __init__(self):
self.faces = [MockFace() for _ in range(10)]
self.edges = [MockEdge() for _ in range(20)]
class MockFace:
def __init__(self):
self.center_point = torch.randn(3)
self.normal_vector = torch.randn(3)
self.surface_type = 0
self.edges = []
try:
# 梯度约束损失
grad = torch.autograd.grad(
pred_sdf.sum(),
points,
create_graph=True,
retain_graph=True,
allow_unused=True
)[0]
if grad is not None:
grad_constraint = F.mse_loss(
torch.norm(grad, dim=-1),
torch.ones_like(pred_sdf.squeeze(-1))
)
else:
grad_constraint = torch.tensor(0.0, device=pred_sdf.device)
class MockEdge:
def __init__(self):
self.length = lambda: 1.0
self.point_at = lambda t: torch.randn(3)
except Exception as e:
logger.warning(f"Gradient computation failed: {str(e)}")
grad_constraint = torch.tensor(0.0, device=pred_sdf.device)
return l1_loss + grad_weight * grad_constraint
def main():
# 获取配置
config = get_default_config()
# 初始化模型
model = BRepToSDF(config=config)
brep_model = MockBRep()
query_points = torch.randn(batch_size, num_points, 3)
# 从配置获取参数
batch_size = config.train.batch_size
max_face = config.data.max_face
max_edge = config.data.max_edge
num_surf_points = config.model.num_surf_points
num_edge_points = config.model.num_edge_points
# 生成测试数据
test_data = {
'edge_ncs': torch.randn(batch_size, max_face, max_edge, num_edge_points, 3),
'edge_pos': torch.randn(batch_size, max_face, max_edge, 6),
'edge_mask': torch.ones(batch_size, max_face, max_edge, dtype=torch.bool),
'surf_ncs': torch.randn(batch_size, max_face, num_surf_points, 3),
'surf_pos': torch.randn(batch_size, max_face, 6),
'vertex_pos': torch.randn(batch_size, max_face, max_edge, 2, 3),
'query_points': torch.randn(batch_size, 1000, 3) # 1000个查询点
}
# 打印输入数据形状
logger.info("Input shapes:")
for name, tensor in test_data.items():
logger.info(f" {name}: {tensor.shape}")
# 前向传播
sdf = model(brep_model, query_points)
if sdf is not None:
print(f"Output SDF shape: {sdf.shape}")
try:
sdf = model(**test_data)
logger.info(f"\nOutput SDF shape: {sdf.shape}")
# 计算模型参数量
total_params = sum(p.numel() for p in model.parameters())
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
logger.info(f"\nModel statistics:")
logger.info(f" Total parameters: {total_params:,}")
logger.info(f" Trainable parameters: {trainable_params:,}")
except Exception as e:
logger.error(f"Error during forward pass: {str(e)}")
raise
if __name__ == "__main__":
main()

2
brep2sdf/train.py

@ -4,7 +4,7 @@ import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from brep2sdf.data.data import BRepSDFDataset
from brep2sdf.networks.encoder import BRepToSDF, sdf_loss
from brep2sdf.networks.network import BRepToSDF, sdf_loss
from brep2sdf.utils.logger import logger
from brep2sdf.config.default_config import get_default_config, load_config
import wandb

Loading…
Cancel
Save